A l'attention de

**TOTAL - RETIA** 

Date

Février 2021

Référence Ramboll

FRTOTMS020-R1.3

Référence RETIA

210222-RAP-E-U1-EFRA00013-DIAG\_GAL3-5\_invest sols et eaux sout-VF

# VAUVERT (30) SITES DU LANGUEDOC – RAPPORT SUR LES INVESTIGATIONS ET LES PRELEVEMENTS LIBERATOIRES REALISES SUR LE SITE DE GALLICIAN 3 ET 5 (GAL3 ET GAL5)



QSSE Temp015 Rev G









# VAUVERT (30) SITES DU LANGUEDOC – RAPPORT SUR LES INVESTIGATIONS ET LES PRELEVEMENTS LIBERATOIRES REALISES SUR LE SITE DE GALLICIAN 3 ET 5 (GAL3 ET GAL5)

Référence FRTOTMS020-R1

Version 3

Date 22/02/2021
Rédacteur Vincent Damart
Vérificateur Aude Delahaye
Approbateur Nicolas Ampen

Rédacteur :

Vérificateur :

Approbateur:

### Clause de non-responsabilité

Ramboll a rédigé ce rapport à la demande du Client pour les objectifs qui y sont détaillés. Le présent rapport et les documents qui l'accompagnent sont destinés à l'usage et au bénéfice du client à cette seule fin et ne peuvent être utilisés par ou divulgués, en partie ou dans son intégralité, à toute autre personne sans le consentement écrit exprès de Ramboll. Ramboll ne doit ni n'accepte aucun devoir envers un tiers et ne saurait être tenue responsable des pertes, dommages ou dépenses de quelque nature que ce soit qui seraient causés par l'interprétation par ce tiers des informations contenues dans le présent rapport.

### Révision du Document

| IXC VISION                                                                                     | Revision du Document                                                                      |               |              |                         |                                                                                          |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------|--------------|-------------------------|------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Révision                                                                                       | Date                                                                                      | Rédacteur     | Vérificateur | Approbateur             | Description                                                                              |  |  |  |  |  |  |  |  |
| 1                                                                                              | 07/12/2020                                                                                | VDA           | ADE          | NAM                     | Version initiale                                                                         |  |  |  |  |  |  |  |  |
| 2                                                                                              | 18/01/2021                                                                                | VDA           | ADE          | NAM                     | Version révisée suite aux remarques de RETIA                                             |  |  |  |  |  |  |  |  |
| 3                                                                                              | 22/02/2021                                                                                | VDA           | ADE          | NAM Version finale      |                                                                                          |  |  |  |  |  |  |  |  |
| Contact client  Directeur de projet  Aude Delahaye  adelahaye@ramboll.com  Tél: 04 42 90 74 96 |                                                                                           |               |              |                         |                                                                                          |  |  |  |  |  |  |  |  |
| 13100 AIX<br>Tel: +33                                                                          | rance SAS<br>ouis de Broglie, In<br>(-EN-PROVENCE<br>(0)4 42 90 74 96<br>(0)4 42 90 71 58 | nmeuble le Cé | zanne        | Représenta<br>RCS AIX-E | pital de 38 115 €<br>ant Légal : Guy Lewis<br>N-PROVENCE 2002 B 1288<br>13 685 029 00094 |  |  |  |  |  |  |  |  |

Etablissement émetteur : Ramboll Immeuble Le Cézanne

155 rue Louis de Broglie 13100 Aix-en-Provence T +33 (0)4 42 90 74 96

F +33 (0)4 42 90 71 58

www.ramboll.com

### **SOMMAIRE**

| 1.      | PRESENTATION DU CONTEXTE                           | 1    |
|---------|----------------------------------------------------|------|
| 1.1     | Contexte général                                   | 1    |
| 1.2     | Objectifs                                          | 1    |
| 1.3     | Documents de référence                             | 1    |
| 2.      | PRESENTATION DU SITE DE GALLICIAN 3 ET 5 (GAL      | B ET |
|         | GAL5)                                              | 2    |
| 2.1     | Contexte environnemental                           | 2    |
| 2.1.1   | Localisation                                       | 2    |
| 2.1.2   | Contexte géologique                                | 2    |
| 2.1.3   | Contexte hydrogéologique                           | 2    |
| 2.1.4   | Contexte hydrologique                              | 2    |
| 2.2     | Historique du site                                 | 3    |
| 2.2.1   | Puits GAL3                                         | 3    |
| 2.2.2   | Puits GAL5                                         | 3    |
| 2.2.3   | Infrastructures                                    | 3    |
| 2.3     | Investigations                                     | 4    |
| 2.4     | Réhabilitation                                     | 6    |
| 3.      | INVESTIGATIONS REALISEES PAR RAMBOLL               | 7    |
| 3.1     | Investigations                                     | 7    |
| 3.1.1   | Première phase (novembre 2019)                     | 7    |
| 3.1.2   | Deuxième phase (septembre 2020)                    | 8    |
| 3.2     | Echantillonnage                                    | 10   |
| 3.2.1   | Sols                                               | 10   |
| 3.2.2   | Eaux souterraines                                  | 11   |
| 3.3     | Programme analytique                               | 11   |
| 3.3.1   | Sols                                               | 11   |
| 3.3.2   | Eaux souterraines                                  | 12   |
| 4.      | PIEZOMETRIE                                        | 13   |
| 5.      | RESULTATS                                          | 14   |
| 5.1     | Indices organoleptiques de contamination           | 14   |
| 5.2     | Critères d'interprétation                          | 14   |
| 5.3     | Présentation des résultats analytiques obtenus sur | les  |
|         | échantillons de sols et des eaux souterraines      | 14   |
| 5.3.1   | Résultats analytiques des eaux souterraines        | 14   |
| 5.3.2   | Résultats analytiques des sols                     | 15   |
| 5.3.3   | Estimation des volumes de terres suspectes         | 17   |
| 6.      | CONCLUSION ET RECOMMANDATIONS                      | 20   |
| LIMITAT | ION                                                | 21   |

### LISTE DES TABLEAUX

| Tableau 1 : Investigations et résultats analytiques de l'audit environnement de |
|---------------------------------------------------------------------------------|
| mars 2005 5                                                                     |
| Tableau 2 : Programme d'investigation du site GAL3-5 (novembre 2019) 7          |
| Tableau 3: Programme d'investigation du site GAL3-5 (septembre 2020) 9          |
| Tableau 4 : Longueur (en m) des différentes parties des tranchées du bassin sud |
| (parcelle DE51)10                                                               |
| Tableau 5 : Synthèse des résultats analytiques des eaux souterraines de la      |
| campagne de septembre 202015                                                    |
| Tableau 6 : Synthèse des résultats analytiques sur brut des campagnes de sols   |
| de novembre 2019 et septembre 202016                                            |
| Tableau 7 : Synthèse des résultats analytiques sur éluat des campagnes de sols  |
| de novembre 2019 et septembre 202016                                            |
| Tableau 8 : Résultats analytiques de l'échantillon GAL3-5_T9N par GC-FID17      |
| Tableau 9 : Résultats analytiques du protocole de séparation de famille de      |
| l'échantillon GAL3-5_T9N17                                                      |
| Tableau 10 : Estimation des volumes de terres suspectes et des incertitudes 18  |

### LISTE DES FIGURES

Figure 1: Localisation du site

Figure 2 : Synthèses des infrastructures observées par photographie aérienne ou sur plan (GAL3-5)

Figure 3 : Localisation des différents sondages réalisés sur site (GAL3-5)

Figure 4 : Carte piézométrique du 24 septembre 2020

Figure 5 : Anomalies des concentrations dans les sols - Campagnes de novembre 2019 et septembre 2020

Figure 6 : Localisation des zones de terres présentant des anomalies

### **ANNEXES**

### Annexe 1

Résultats analytiques – Audit environnemental de mars 2005

### Annexe 2

Coupes techniques des sondages – Campagnes de novembre 2019 et septembre 2020

### Annexe 3

Fiches de prélèvement – Campagnes de novembre 2019 et septembre 2020

### Annexe 4

Photolog des sondages – Campagnes de novembre 2019 et septembre 2020

### Annexe 5

Coordonnées des sondages (Lambert 93) – Campagnes de novembre 2019 et septembre 2020

### Annexe 6

Sites du Languedoc – Rapport sur les investigations et les prélèvements libératoires réalisés sur le site de Gallician 3 et 5 (GAL3 et GAL5)

Programme analytique des sols – Campagne de novembre 2019 et septembre 2020

### Annexe 7

Bordereaux analytiques des sols – Laboratoire Synlab

### Annexe 8

Tableau de synthèse des concentrations dans les sols – Campagnes de novembre 2019 et septembre 2020

### Annexe 9

Tableau de synthèse des concentrations dans les eaux souterraines – Campagne de septembre 2020

### 1. PRESENTATION DU CONTEXTE

### 1.1 Contexte général

Total Exploration & Production France (TEPF) a fait réaliser deux puits, par l'intermédiaire de la société SNPLM, sur une parcelle située sur la commune de Vauvert (30) entre décembre 1951 et août 1952. Ceux-ci ont été exploités de 1952 à 1956 pour la production d'huile lourde. La production du champ pétrolier a cessé en 1959. Les puits ont été fermés définitivement entre août et octobre 2004.

Une fois les ouvrages rebouchés, un audit environnemental a été réalisé, en mars 2005, afin d'évaluer l'état des lieux avant une remise en état du site. Les différentes investigations ont permis d'identifier des niveaux de sols impactés en hydrocarbures et des zones de stockage d'anciennes boues de forage; ces matériaux ont été évacués en filières agrées (3 968 T). Le site a ensuite été reprofilé à l'aide de terre végétale.

A l'heure actuelle, TEPF ne possède plus aucune maîtrise foncière sur ce site ; la parcelle est actuellement utilisée comme pâture.

### 1.2 Objectifs

RETIA, missionné par TEPF, a confié à Ramboll France SAS la réalisation de prélèvements libératoires sur les sols au droit de cette parcelle en vue d'attester de la bonne réhabilitation du site. Cette mission a été réalisée en deux phases :

- En novembre 2019 pour des investigations de sols (offre Ramboll FRTOTMS020-P1.V3 du 30 août 2019 et commande RETIA n° 4501875779 de 19 septembre 2019) ;
- En septembre 2020 pour des investigations complémentaires sur les sols et les eaux souterraines (offre Ramboll FRTOTMS020-P2.V3 du 19 juin 2020 et commande RETIA n° 4501957699 de 18 juillet 2020).

### Ce document présente :

- Une synthèse des données historiques et environnementales issues des documents fournis par RETIA :
- Le contexte environnemental établi à partir des bases de données publiques (Géoportail, InfoTerre) et des rapports d'études environnementales antérieurs fournis par RETIA ;
- Le programme des deux phases d'investigations réalisées en novembre 2019 et septembre 2020 ;
- Une description des méthodes de forage et de prélèvement ;
- L'interprétation des résultats analytiques et leur présentation sous forme cartographique;
- Les coupes géologiques des sondages, les fiches de prélèvement de sols et les bordereaux analytiques transmis par le laboratoire ;
- Une conclusion quant à la complétude des travaux de réhabilitation réalisés en 2005.

L'objectif est de présenter l'ensemble des données historiques et nouvellement acquises afin de statuer sur l'état actuel du site.

### 1.3 Documents de référence

- Rapport de fermeture définitive du puits Gallician 3 (GAL 3), TEPF, daté du 9 novembre 2005;
- Rapport de fermeture définitive du puits Gallician 5 (GAL5), TEPF, daté du 5 juillet 2005 ;
- Programme de réhabilitation des sites de Gallician 3/5 et 9, TEPF, daté du 20 juin 2005;
- Rapport de réhabilitation des sites de Gallician 3/5 et 9, TEPF, daté du 10 novembre 2005;
- Mémo FRTOTMS020-M1.V1 Sites du Languedoc Synthèse des données d'entrée et proposition de programmes d'investigations, Ramboll, envoyé le 25 septembre 2019.

# 2. PRESENTATION DU SITE DE GALLICIAN 3 ET 5 (GAL3 ET GAL5)

### 2.1 Contexte environnemental

### 2.1.1 Localisation

Le site de Gallician 3 et 5 est localisé sur la commune de Vauvert, au sud de la ville de Nîmes dans la Petite Camargue (Figure 1). Les activités se sont principalement concentrées sur la parcelle DE47 d'une superficie de 1,5 hectare, située à proximité du lieu-dit « le Mas Brûlé » au nord du canal du Rhône à Sète. L'altitude moyenne de la zone est de 1,90 m NGF.

### 2.1.2 Contexte géologique

D'après la carte géologique du secteur (Carte BRGM n°991 de Lunel, 1/50 000) la parcelle est implantée, en partie nord, sur des alluvions plio-quaternaires (apport rhodanien) constituées de galets de 1 à 40 cm de diamètre de nature diverse. Un sable argileux jaune fluviatile emballe les éléments grossiers et peut parfois constituer des lentilles sableuses. Cette formation est rencontrée sur une épaisseur de 10 m d'après les coupes des deux puits. En-dessous, des sables du Pliocène ont été trouvés dans les forages jusqu'à une profondeur de 75 m (des lentilles d'argile et de tourbe sont mentionnées dans cette formation sur la coupe géologique du puits GAL3).

En partie sud du site, les alluvions plio-quaternaires sont recouvertes par des dépôts palustres du Quaternaire constitués d'argiles grises plastiques ou finement sableuses, de sables fins et de tourbes qui sont probablement de faible épaisseur (<2 m).

### 2.1.3 Contexte hydrogéologique

Un aquifère superficiel est présent dans les alluvions plio-quaternaires à une profondeur comprise entre 0,7 et 3 m. Cet aquifère a une faible perméabilité mais, localement, les sables pliocènes peuvent s'avérer particulièrement productifs et la nappe y est exploitée pour l'alimentation en eau potable. Vingt-quatre puits ou forages, référencés comme point d'eau (usage inconnu), ont été identifiés autour des puits GAL3 et GAL5 dans un rayon de 800 m. Deux puits privés (usages non précisés) sont référencés en limites nord et ouest de la parcelle et un puits non répertorié est présent sur la parcelle au sud-est de la parcelle DE47a. Tous ces ouvrages sont positionnés latéralement ou en amont hydraulique du site, à l'exception du puits observé sur la parcelle. A noter qu'un point d'eau est indiqué au sud du site, de l'autre côté du Canal du Rhône à Sète, mais semble mal positionné au vu des informations disponibles. Les captages AEP (Adduction Eau Potable) les plus proches sont situés à 1,1 km à l'est/nord-est de la parcelle (vers Gallician). Le sens d'écoulement n'est pas connu mais est probablement dirigé vers le sud, suivant la topographie générale et en direction de l'Etang du Charnier.

Au sud du site, un aquifère sub-affleurant est présent dans les dépôts palustres du Quaternaire. La nappe, fortement minéralisée, n'est pas exploitée. Le sens d'écoulement est vraisemblablement dirigé vers le sud, suivant la topographie générale et en direction de l'Etang du Charnier.

Il est probable qu'il y ait une continuité hydraulique entre ces deux aquifères.

### 2.1.4 Contexte hydrologique

Le site est longé à l'est par un ruisseau temporaire, qui se jette dans le Valat de Valliouguès à 260 m à l'ouest. A 250 m au sud du site passe le canal du Rhône à Sète qui se jette dans la Mer Méditerranée. Au sud du canal, se trouve le Marais et l'Etang du Charnier.

### 2.2 Historique du site

### 2.2.1 Puits GAL3

Le puits a été foré de décembre 1951 à janvier 1952 à une profondeur de 1 740,5 m/sol puis mis en service pour la production d'huile lourde en février 1952. Il a ensuite été approfondi après épuisement du niveau jusqu'à 1 870,8 m/sol de janvier à mars 1953 et remis en service en décembre de cette même année après plusieurs interventions et réparations. Le puits a produit jusqu'en mars 1956.

En 1970, un rapport fait état d'une pression en tête de forage et d'une « fuite d'huile ».

Les opérations de fermeture définitive de l'ouvrage ont été réalisées entre août et octobre 2004 avec retrait du cuvelage jusqu'à 95 m/TR (table de rotation) et comblement à l'aide de ciment et de boue au gypse.

### 2.2.2 Puits GAL5

Le puits a été foré d'avril à août 1952 à une profondeur finale de 2 070 m/sol puis mis en service le même mois pour la production d'huile lourde. A la suite d'une rupture de tubing en octobre 1952 et devant l'impossibilité technique d'accéder au réservoir, le puits n'a pas été remis en service (abandon en mars 1954).

En mai 2004, il est apparu que la tête de puits avait été retirée, ce qui pouvait laisser échapper des huiles, du gaz ou des eaux souillées.

Les opérations de fermeture définitive de l'ouvrage ont été réalisées en octobre 2004 avec retrait du cuvelage jusqu'à 249 m/TR et comblement à l'aide de ciment et de boue au gypse.

Une présence d'huile a été constatée en tête de tubage lors des opérations de fermeture.

### 2.2.3 Infrastructures

Lors de l'analyse des plans et des photographies aériennes historiques, plusieurs infrastructures potentiellement contaminées (ZPC) ont été relevées :

- Sur le plan foncier.<sup>1</sup>, il est indiqué un bourbier d'une profondeur de 1,20 m au sud des deux puits ainsi qu'un piège à huile juste au-dessus du bassin. En limite ouest de la parcelle, il est indiqué « dalle produit » et un bourbier de taille plus réduite et d'une profondeur de 1 m est situé au nord de cette dalle.
- Sur le plan d'échantillonnage<sup>1</sup>, il est indiqué dans le coin nord de la parcelle « boue solidifiée ».
- Enfin sur les photographies aériennes d'avril 1954 et de novembre 1962, plusieurs bassins et structures ont été relevé :
  - deux bassins ou bourbiers dans la partie nord de la parcelle DE47a avec des dimensions estimées de 27x27 m et de 21x27 m;
  - un bassin dans la parcelle DE51, au sud de la parcelle DE47b avec des dimensions estimées de 45x30 m;
  - un bassin au sud-ouest de la parcelle DE50, à l'est des parcelle DE47, avec des dimensions estimées de 22x20 m ;
  - enfin des infrastructures rondes, situées dans la parcelle DE47b, sont visibles et pourraient correspondre à des cuves ou des réservoirs de stockage.

Les emplacements de ces infrastructures sont présentés en Figure 2.

<sup>&</sup>lt;sup>1</sup> Rapport de réhabilitation des sites de Gallician 3/5 et 9, TEPF, daté du 10 novembre 2005

### 2.3 Investigations

Des investigations ont eu lieu sur le site GAL3-5 en mars 2005.<sup>2</sup> afin de d'évaluer l'état des lieux avant remise en état du site.

Huit sondages ont été réalisés à la pelle mécanique, jusqu'à la nappe phréatique et 1 à 5 échantillons ont été prélevés par point. Leurs emplacements approximatifs sont présentés en Figure 3.

Le pH, l'indice hydrocarbure, les HAP (sondage n°2 uniquement) et les métaux (As, Cd, Cr, Cu, Hg, Ni, Pb et Zn) ont été analysés sur les terres brutes sur ce site par le laboratoire Contrôle et Environnement de TEPF.

Une synthèse des investigations et des résultats analytiques notables sont présentés dans le Tableau 1 ci-après :

<sup>&</sup>lt;sup>2</sup> Rapport de réhabilitation des sites de Gallician 3/5 et 9, TEPF, daté du 10 novembre 2005

Tableau 1 : Investigations et résultats analytiques de l'audit environnement de mars 2005

| N°<br>sondage | Localisation                                                 | Profondeur<br>m/sol | Nombre de prélèvement | Observations organoleptiques    | Valeurs analytiques notables |  |
|---------------|--------------------------------------------------------------|---------------------|-----------------------|---------------------------------|------------------------------|--|
| 1             | Echantillon de référence, limite est de la parcelle          | 2,6                 | 3                     | -                               | -                            |  |
| 2             | Au droit du bosquet d'arbre (partie nord)                    | 1,6                 | 3                     | -                               | HCT (max = 5 700 mg/kg)      |  |
| 3             | A côté (sud) de la tête de puits GAL3                        | 2                   | 3                     | -                               | HCT (max = 2 200 mg/kg)      |  |
| 4             | A côté (sud) de la tête de puits GAL5                        | 2,2                 | 3                     | Forte odeur<br>d'hydrocarbures  | HCT (max = 1 300 mg/kg)      |  |
| 5             | Sud-ouest de la parcelle, point bas                          | 0,6                 | 1                     | -                               | -                            |  |
| 6             | Entre la dalle moteur et la clôture (sud-est de la parcelle) | 2,3                 | 5                     | -                               | -                            |  |
| 7             | A côté de la dalle produits et du bosquet d'arbre            | 2,3                 | 4                     | Faible odeur<br>d'hydrocarbures | HCT (max = 1 400 mg/kg)      |  |
| 8             | Entrée, entre les deux puits                                 | 2,3                 | 4                     | -                               | HCT (max = 710 mg/kg)        |  |

Des teneurs en métaux (As, Cu, Pb et Zn) supérieures au seuil bas des « fortes anomalies naturelles », issues du programme ASPITET de l'INRA (février 2000), sont relevées sur une majorité des échantillons. D'après le rapport de novembre 2005, celles-ci sont possiblement dues à la présence de pyrite dans les matériaux.

L'ensemble des résultats de cette campagne est présenté en Annexe 1.

### 2.4 Réhabilitation

Après interprétations des résultats analytiques de 2005, une réhabilitation du site a été réalisée comme suit :

- Démolition des installations puis retrait et évacuation des bétons d'un volume de 260 m³;
- Retrait et évacuation de remblais d'un volume de 2 635 m³;
  - excavation sur 1 m de profondeur entre les sondages n°2 et n°7;
  - excavation sur 0,8 m de profondeur autour du sondage n°3;
  - retrait de la couche de remblais 45 cm autour du sondage n°4;
  - retrait de la couche de remblais 15 cm autour du sondage n°5;
  - retrait de la couche de remblais 30 cm autour du sondage n°6 ;
- Retrait et évacuation des boues solidifiées d'un tonnage de 1 333 T;
- Evacuation de déchets divers ;
- Reprofilage du terrain ;
- Apport et mise en place de terre végétale.

### 3. INVESTIGATIONS REALISEES PAR RAMBOLL

### 3.1 Investigations

Deux phases d'investigations ont été réalisées sur le site GAL3-5, en novembre 2019 et en septembre 2020.

### 3.1.1 Première phase (novembre 2019)

Lors de cette première phase, le programme d'investigations suivant a été proposé par Ramboll et validé par RETIA (cf. Tableau 2).

Tableau 2: Programme d'investigation du site GAL3-5 (novembre 2019)

| Ouvrage | Nom       | Zone de la plateforme                                | Profondeur<br>envisagée | Arrêt<br>forage                     |
|---------|-----------|------------------------------------------------------|-------------------------|-------------------------------------|
|         | GAL3-5_S0 | Limite nord de la parcelle (fond géochimique)        |                         |                                     |
|         | GAL3-5_S1 | Cuves ou réservoirs aériens                          |                         |                                     |
|         | GAL3-5_S2 | Ancien bourbier (sud de la plateforme)               |                         | Refus ou<br>atteinte de<br>la nappe |
|         | GAL3-5_S3 | Entre les deux puits                                 |                         |                                     |
| Sondage | GAL3-5_S4 | Ancien bourbier (nord de la plateforme)              | 4 m                     |                                     |
|         | GAL3-5_S5 | Ancien bassin (nord de la plateforme)                |                         | phréatique                          |
|         | GAL3-5_S6 | Ancienne zone de stockage des boues solidifiées      |                         |                                     |
|         | GAL3-5_S7 | Ancien bassin (sud de la plateforme – parcelle DE51) |                         |                                     |
|         | GAL3-5_S8 | Ancien bassin (est de la plateforme - parcelle DE50) |                         |                                     |

Les sondages ont été réalisés les 20 et 21 novembre 2019 à l'aide d'une pelle mécanique par l'entreprise Stranic sous la supervision de Ramboll et en présence d'un représentant RETIA. La localisation des ouvrages est présentée en Figure 3.

Les sondages ont été réalisés jusqu'à une profondeur comprise entre 1 et 3 m et le niveau statique de la nappe a été noté entre 0,7 et 3 m de profondeur sous le niveau du terrain naturel. Les observations géologiques et organoleptiques sont consignées dans les coupes techniques fournies en Annexe 2.

L'emplacement du point GAL3-5\_S7 étant inondé, ce sondage n'a pas pu être réalisé.

Les sondages ont été rebouchés en respectant la géologie et en prenant soin de remettre la terre végétale en surface.

Les positions (X, Y et Z) des sondages ont ensuite été repérées par un géomètre expert (Lambert 93) ; ces coordonnées sont fournies en Annexe 5.

### 3.1.2 Deuxième phase (septembre 2020)

A la suite de l'interprétation des résultats de la première phase d'investigations, RETIA a décidé de procéder à des investigations complémentaires en septembre 2020 afin de délimiter les zones, présentant des valeurs supérieures aux valeurs de référence, identifiées en novembre 2019. Les investigations se sont concentrées autour des sondages GAL3-5\_S1 (cuves ou réservoir aériens), GAL3-5\_S2 et GAL3-5\_S2bis (ancien bourbier) et au niveau du bassin au sud de la plateforme qui n'avait pas pu être caractérisé en novembre 2019. Des tranchées ont été réalisées afin d'obtenir une délimitation spatiale des zones suspectes et des bourbiers.

Le programme d'investigations suivant a été proposé par Ramboll et validé par RETIA (cf. Tableau 3).

Tableau 3 : Programme d'investigation du site GAL3-5 (septembre 2020)

| Ouvrage    | Nom        | Zone de la plateforme                                                                     | Profondeur<br>envisagée | Longueur<br>envisagée | Arrêt<br>forage         |
|------------|------------|-------------------------------------------------------------------------------------------|-------------------------|-----------------------|-------------------------|
|            | GAL3-5_S10 | Cuves ou réservoirs aériens - au nord du sondage GAL3-5_S1                                |                         |                       |                         |
|            | GAL3-5_S11 | Cuves ou réservoirs aériens - à l'est du sondage GAL3-5_S1                                |                         |                       |                         |
| Condono    | GAL3-5_S12 | Cuves ou réservoirs aériens - au sud du sondage GAL3-5_S1                                 |                         |                       |                         |
| Sondage    | GAL3-5_S13 | Cuves ou réservoirs aériens - à l'ouest du sondage GAL3-5_S1                              |                         |                       |                         |
|            | GAL3-5_S14 | Ancien bassin (sud de la plateforme – parcelle DE51 – bordure ouest)                      |                         |                       |                         |
|            | GAL3-5_S15 | Ancien bassin (sud de la plateforme – parcelle DE51 – bordure est)                        |                         |                       |                         |
|            | GAL3-5_T1  | Ancien bourbier (sud de la plateforme) – au nord des sondages GAL3-5_S2 et GAL3-5_S2bis   |                         |                       | Refus ou<br>atteinte de |
|            | GAL3-5_T2  | Ancien bourbier (sud de la plateforme) – à l'est des sondages GAL3-5_S2 et GAL3-5_S2bis   | 2 m                     |                       |                         |
|            | GAL3-5_T3  | Ancien bourbier (sud de la plateforme) – au sud des sondages GAL3-5_S2 et GAL3-5_S2bis    | 2 m                     |                       | la nappe<br>phréatique  |
| Tranchée   | GAL3-5_T4  | Ancien bourbier (sud de la plateforme) – à l'ouest des sondages GAL3-5_S2 et GAL3-5_S2bis |                         | 15 m                  |                         |
| Transition | GAL3-5_T5  | Ancien bassin (sud de la plateforme – parcelle DE51 – côté ouest)                         |                         |                       |                         |
|            | GAL3-5_T6  | Ancien bassin (sud de la plateforme – parcelle DE51 – côté ouest)                         |                         |                       |                         |
|            | GAL3-5_T7  | Ancien bassin (sud de la plateforme – parcelle DE51 – au centre)                          |                         |                       |                         |
|            | GAL3-5_T8  | Ancien bassin (sud de la plateforme – parcelle DE51 – au centre)                          |                         |                       |                         |
|            | GAL3-5_T9  | Ancien bassin (sud de la plateforme – parcelle DE51 – côté est)                           |                         |                       |                         |
|            | GAL3-5_T10 | Ancien bassin (sud de la plateforme – parcelle DE51 – côté est)                           |                         |                       |                         |
| 517        | GAL3-5_MW1 | Au sud des cuves ou réservoirs aériens et du sondage GAL3-5_S1 (aval hydraulique supposé) | _                       |                       | -                       |
| Piézomètre | GAL3-5_MW2 | Au sud de la plateforme – parcelle DE51 (aval hydraulique supposé)                        | 5 m                     |                       | Refus                   |
|            | GAL3-5_MW3 | Au nord de la plateforme (amont hydraulique supposé)                                      |                         |                       |                         |

Les sondages et les tranchées ont été réalisés du 16 au 21 septembre 2020 par l'entreprise EJM Hydrovac à l'aide d'une pelle mécanique sous la supervision de Ramboll et en présence d'un représentant RETIA. La présence d'arbres en limite du bassin sud n'ayant pas permis la réalisation de tranchées de 15 m continue (GAL3-5\_T5 à GAL3-5\_T10), ces dernières ont été divisées en deux avec une partie nord (N) et une partie sud (S) (cf. Tableau 4).

Tableau 4 : Longueur (en m) des différentes parties des tranchées du bassin sud (parcelle DE51)

| Tranchées  | Longueur partie<br>nord<br>(m) | Longueur non<br>creusée<br>(m) | Longueur partie<br>sud<br>(m) | Longueur totale<br>(m) |
|------------|--------------------------------|--------------------------------|-------------------------------|------------------------|
| GAL3-5_T5  | 3,9                            | 3,6                            | 10,3                          | 17,8                   |
| GAL3-5_T6  | 7,3                            | 5,3                            | 2,8                           | 15,4                   |
| GAL3-5_T7  | 2                              | 4,1                            | 9,8                           | 15,9                   |
| GAL3-5_T8  | 9,9                            | 4                              | 2,8                           | 16,7                   |
| GAL3-5_T9  | 2,3                            | 3                              | 10                            | 15,3                   |
| GAL3-5_T10 | 8,5                            | 3,6                            | 3,4                           | 15,5                   |

Les sondages et tranchées ont été réalisés jusqu'à une profondeur comprise entre 1,5 et 2,4 m et le niveau de la nappe a été relevé entre 1 et 2,3 m de profondeur sous le niveau du terrain naturel. Les sondages et tranchées ont été rebouchés en respectant la géologie et en prenant soin de remettre la terre végétale en surface.

Les piézomètres ont été forés les 14 et 15 septembre 2020 à l'aide d'une foreuse sonique par l'entreprise Environnement Investigations sous la supervision de Ramboll et en présence d'un représentant RETIA selon la norme FD X 31-614.

Ces ouvrages ont été forés entre 6 et 7 m de profondeur à un diamètre de 156 mm et le niveau de la nappe a été noté entre 0,6 et 0,9 m de profondeur sous le niveau du terrain naturel. Les piézomètres ont été équipés de tubage PEHD de diamètre 80/90 mm, crépinés à partir de 1 ou 3 m en dessous du niveau naturel du sol.

Les observations géologiques et organoleptiques sont consignées dans les coupes techniques fournies en Annexe 2 et la localisation des ouvrages est présentée en Figure 3.

Les positions (X, Y et Z) des investigations ont ensuite été repérées par un géomètre expert (Lambert 93) ; les coordonnées sont présentées en Annexe 5.

### 3.2 Echantillonnage

### 3.2.1 Sols

L'échantillonnage des sols, en application des normes FD X 31 100 et ISO 18400-105, a été réalisé en suivant le protocole suivant :

- Observation visuelle et relevé des indices organoleptiques de contamination (mesures PID) des terrains
- Description du prélèvement (litho-stratigraphie, indices organoleptiques) ;
- Prélèvement des terres par un ingénieur Ramboll muni de gants nitriles neufs (prélèvement systématique d'un doublon) ;
- Conditionnement rapide des sols dans un flaconnage approprié fourni par le laboratoire d'analyse :
- Fermeture hermétique, étiquetage et conditionnement dans des glacières ;
- Envoi des glacières réfrigérées au laboratoire SYNLAB (accrédité COFRAC) pour analyse ou stockage des doublons pour une durée maximale de 6 semaines.

Dans le cas d'une suspicion d'impact (détection PID, observations visuelles...), pour permettre une délimitation verticale, un prélèvement ponctuel de la zone suspecte a été réalisé et les horizons sus et sous-jacents ont été prélevés, lorsqu'il était possible de le faire (le niveau statique de la nappe étant proche de la surface, il n'a pas toujours été possible de prélever un échantillon endessous des niveaux visuellement impactés). Si aucun indice de pollution n'a été constaté, un échantillonnage moyen a été réalisé sur l'ensemble de la hauteur du sondage. Dans le cas des tranchées, un échantillon moyen a été réalisé sur 2 à 3 m de longueur sur un même horizon.

L'ensemble des informations relatives à l'échantillonnage a été consigné dans les fiches de prélèvement fournies en Annexe 3. Un reportage photographique des investigations est présenté en Annexe 4.

Au total, 1 à 3 prélèvements de sol ont été réalisés par sondage et tranchée et 3 échantillons de sol ont été prélevés lors de la foration du piézomètre MW1.

### 3.2.2 Eaux souterraines

L'échantillonnage des eaux souterraines, en application de la norme FD X 31-615, a été réalisé le 24 septembre 2020 en suivant le protocole suivant :

- Mesure du niveau d'eau et détermination de la présence ou non de phase flottante à l'aide d'une sonde électronique à interface ;
- Purge du volume d'eau contenu dans le piézomètre et mesure tout au long de la purge des paramètres physico-chimiques de l'eau pompée (pH, température, conductivité électrique) jusqu'à stabilisation de ces derniers;
- Filtrations des eaux de purges sur charbon actif avant rejet ;
- Prélèvement de l'échantillon d'eaux souterraines en sortie de pompe. Le matériel de prélèvement et les gants sont renouvelés entre chaque prélèvement afin d'éviter toute contamination croisée au niveau des échantillons ;
- Conditionnement dans des flacons adaptés à l'analyse requise et fournis par le laboratoire. Une filtration a été réalisée pour les métaux dissous.
- Réalisation d'un blanc de terrain ;
- Les échantillons sont ensuite placés dans des glacières équipées de blocs réfrigérants et envoyés au laboratoire SYNLAB (accrédité COFRAC) pour analyse.

L'ensemble des informations relative à l'échantillonnage ont été consignées dans les fiches de prélèvement fournies en Annexe 3. Un reportage photographique des investigations est présenté en Annexe 4.

### 3.3 Programme analytique

### 3.3.1 Sols

Les échantillons de sol ont été conditionnés et envoyés pour analyse d'une ou de l'ensemble des substances suivantes :

- les BTEX (Benzène, Toluène, Éthylbenzène et Xylènes) ;
- les HAP (Hydrocarbures Aromatiques Polycycliques);
- les HCT (Hydrocarbures Totaux) C5-C10 et C10-C40;
- les métaux sur brut (As, Cd, Cr, Cu, Hg, Pb, Ni et Zn);
- un pack dit « ISDI » (Installation de Stockage des Déchets Inertes).

Le programme analytique détaillé par échantillon de sol est présenté en Annexe 6.

Un échantillon de produit pur a également été prélevé dans la partie nord de la tranchée GAL3-5\_T9 et a été envoyé au laboratoire du CEDRE pour analyse à la demande de RETIA. L'échantillon a été analysé par chromatographie en phase gazeuse couplée à un détecteur à ionisation de flamme

(GC-FID) et selon un protocole de séparation de famille (dissolution au pentane puis élution des maltènes sur colonne de silice).

### 3.3.2 Eaux souterraines

Les trois échantillons d'eau souterraine prélevés dans les ouvrages MW1, MW2 et MW3, ainsi qu'un blanc de terrain (eau déminéralisée ou eau de source), ont été conditionnés et envoyés pour analyse des substances suivantes :

- les BTEX (Benzène, Toluène, Éthylbenzène et Xylènes) ;
- les HAP (Hydrocarbures Aromatiques Polycycliques);
- les HCT (Hydrocarbures Totaux) C5-C10 et C10-C40;
- les métaux sur brut (As, Cd, Cr, Cu, Hg, Pb, Ni et Zn).

### 4. PIEZOMETRIE

Le niveau statique de la nappe, mesuré le 24 septembre 2020, est compris entre -0,24 et 1,23 m NGF. La carte piézométrique est présentée en Figure 4.

La carte montre un gradient de l'ordre de 7,2 ‰ avec une direction générale d'écoulement dirigée vers le sud-est.

### 5. RESULTATS

### 5.1 Indices organoleptiques de contamination

Lors des campagnes de novembre 2019 et de décembre 2020, des anomalies en hydrocarbures (odeurs, couleur et/ou irisations) ont été relevés sur plusieurs points. Ces observations sont reportées sur les coupes techniques des forages en Annexe 2.

### 5.2 Critères d'interprétation

Les résultats analytiques des sols ont été comparés en première approche :

- Aux valeurs de référence listées dans l'annexe II de l'arrêté ministériel du 12 décembre 2014 (seuil ISDI).
- Les métaux sur brut ont été comparés au seuil bas des « Fortes anomalies naturelles» issues du programme ASPITET de l'INRA (février 2000) et au fond géochimique local défini grâce aux résultats d'analyses du sondage GAL3-5\_SO. A noter cependant, qu'un seul échantillon a été prélevé pour définir le fond géochimique.

Les résultats sur les eaux souterraines ont été comparés aux valeurs de référence issues de l'annexe II du Guide d'évaluation de l'état des eaux souterraines de juillet 2019 du Ministère de la Transition écologique et solidaire. Ces valeurs seuils nationales sont basées sur :

- L'arrêté modifié du 17 décembre 2008 établissant les critères d'évaluation et les modalités de détermination de l'état des eaux souterraines et des tendances significatives et durables de dégradation de l'état chimique des eaux souterraines;
- L'arrêté du 11 janvier 2007 relatif aux limites de référence de qualité des eaux destinées à la consommation humaine seuil « eau brute »;
- L'Organisation Mondiale de la Santé (OMS) ;
- La Directive-Cadre Européenne (DCE) ;
- L'Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES).

Les paramètres n'ayant pas de valeur de référence seront comparés aux limites de quantification du laboratoire.

# 5.3 Présentation des résultats analytiques obtenus sur les échantillons de sols et des eaux souterraines

### 5.3.1 Résultats analytiques des eaux souterraines

La synthèse des résultats analytiques des eaux souterraines de la campagne de septembre 2020 est présentée dans le Tableau 5 ci-après.

Le bordereau analytique est présenté en Annexe 7 et les tableaux complets des résultats analytiques sont fournis en Annexe 9.

| Tableau 5 : Synthèse des résultats analytiques des eaux souterraines de la campagne de septembre 20 | Tableau 5 : S | vnthèse des | résultats anal | vtiques des | s eaux souterrain | es de la cam | pagne de se | ptembre 202 |
|-----------------------------------------------------------------------------------------------------|---------------|-------------|----------------|-------------|-------------------|--------------|-------------|-------------|
|-----------------------------------------------------------------------------------------------------|---------------|-------------|----------------|-------------|-------------------|--------------|-------------|-------------|

| PARAMETRE                     | Unité | LQ    | Valeur de référence* | GAL3-5<br>_MW1 | GAL3-5<br>_MW2 | GAL3-5<br>_MW3 | GAL3-5<br>_MWB |
|-------------------------------|-------|-------|----------------------|----------------|----------------|----------------|----------------|
| METAUX                        |       |       |                      |                |                |                |                |
| Arsenic                       |       | <5    | 10                   | <              | 5,6            | <              | <              |
| Cadmium                       |       | <0,2  | 5                    | <              | <              | <              | <              |
| Chrome                        |       | <1    | 50                   | <              | <              | <              | <              |
| Cuivre                        | /1    | <2    | 2 000                | 2,4            | <              | 3,4            | <              |
| Mercure                       | μg/l  | <0,05 | 1                    | <              | <              | <              | <              |
| Nickel                        |       | <3    | 20                   | 3,5            | <              | <              | <              |
| Plomb                         |       | <2    | 10                   | 2,3            | <              | 2,3            | <              |
| Zinc                          |       | <10   | 5 000                | <              | <              | <              | <              |
| AUTRES ANALYSES               |       |       |                      |                |                |                |                |
| BTEX totaux                   |       | <1    | -                    | <              | <              | <              | <              |
| Somme des HAP                 | /1    | <0,57 | -                    | <              | <              | <              | 0,05           |
| Hydrocarbures volatils C5-C10 | μg/l  | <30   | -                    | <              | <              | <              | <              |
| Hydrocarbures totaux C10-C40  |       | <20   | 1 000                | 25             | 60             | <              | <              |

<sup>\*</sup> Valeurs de référence issues de l'annexe II du Guide d'évaluation de l'état des eaux souterraines (juillet 2019) du Ministère de la Transition écologique et solidaire

Au vu des analyses réalisées, aucune concentration ne dépasse les valeurs de référence. Seules de faibles teneurs en hydrocarbures (C10-C40) sont notables au droit des piézomètres GAL3-5\_MW1 et GAL3-5\_MW2, situés en aval hydraulique du site.

A noter la détection de phénanthrène (HAP) dans le blanc de terrain à une concentration très proche de la limite de quantification du laboratoire. La raison de la présence de ce composé n'est pas connue mais pourrait être dû à une erreur du laboratoire.

### 5.3.2 Résultats analytiques des sols

La synthèse des résultats analytiques des sols des campagnes de novembre 2019 et décembre 2020 est présentée dans le Tableau 6 et le Tableau 7 ci-après. Seuls l'ouvrage GAL3-5\_S0 (référence pour le fond géochimique local) et les échantillons dont une ou plusieurs concentrations dépassent les seuils de référence sont présentés dans ce tableau.

Les principales concentrations mesurées sont présentées en Figure 5a à Figure 5k. Les bordereaux analytiques sont présentés en Annexe 7 et les tableaux complets des résultats analytiques sont fournis en Annexe 8.

<sup>&</sup>lt; : concentration inférieure à la limite de quantification du laboratoire

Tableau 6 : Synthèse des résultats analytiques sur brut des campagnes de sols de novembre 2019 et septembre 2020

|                               |              |        |     | Ouvrage        | GAL3-5_<br>S0 | GAL3-5_<br>S1 | GAL3        | -5_\$2        | GAL3-5_<br>S2bis | GAL3-5_<br>S3 | GAL3-5_<br>S14 | G/          | AL3-5_T1S   | * *          | GAL3-5_<br>T4E** | G <i>A</i>  | AL3-5_T7N    | **      | GAL3-5_<br>T9N** | GAL3-5    | 5_MW1       |
|-------------------------------|--------------|--------|-----|----------------|---------------|---------------|-------------|---------------|------------------|---------------|----------------|-------------|-------------|--------------|------------------|-------------|--------------|---------|------------------|-----------|-------------|
| PARAMETRE                     | Unité        | (1)    | (2) | Prof. (m)      | 0-1,5         | 0,3-1         | 0-0,6       | 0,6-1         | 1,1-1,3          | 0-1           | 0,3-1          | 0,6-0,9     | 0,9         | -1,2         | 1-1,2            | 0-0         | 0,5          | 1,6-1,8 | 0,1-0,4          | 0,4-0,9   | 0,9-1,5     |
|                               |              |        |     | LQ             |               |               |             | Pack<br>ISDI* | Pack<br>ISDI*    |               |                |             |             | Pack<br>ISDI |                  |             | Pack<br>ISDI |         |                  |           |             |
| SUR BRUT                      |              |        |     |                |               |               |             |               |                  |               |                |             |             |              |                  |             |              |         |                  |           |             |
| METAUX                        |              |        |     |                |               |               |             |               |                  |               |                |             |             |              |                  |             |              |         |                  |           |             |
| Arsenic                       |              |        | 60  | <1             | 10            | <u>52</u>     | <u>16</u>   | <u>15</u>     | <u>20</u>        | <u>14</u>     | <u>30</u>      | <u>15</u>   | <u>14</u>   | -            | 20               | 10          | -            | 13      | 12               | <u>14</u> | 6,8         |
| Cadmium                       |              |        | 2   | <0,2           | <             | <u>0,6</u>    | <u>0,25</u> | 0,25          | <u>0,37</u>      | <             | <              | <u>0,24</u> | <u>0,39</u> | _            | <                | <u>0,23</u> | -            | <       | <                | <         | <           |
| Chrome                        |              |        | 150 | <1             | 60            | 30            | 38          | 42            | 41               | <u>63</u>     | 37             | 35          | 37          | -            | 36               | 50          | -            | 77      | 39               | 37        | 28          |
| Cuivre                        | mg/kg MS     |        | 65  | <1             | 40            | <u>110</u>    | <u>69</u>   | <u>42</u>     | <u>62</u>        | <u>140</u>    | 28             | 38          | <u>66</u>   | -            | 37               | 26          | -            | 13      | 17               | 20        | 6           |
| Mercure                       | Trig/kg ivis |        | 2,3 | < 0,05         | <             | <u>0,36</u>   | 0,68        | 0,07          | <u>0,14</u>      | <             | <              | <u>0,08</u> | <u>0,19</u> | _            | <u>0,07</u>      | <u>0,14</u> | -            | <       | <                | <         | <u>0,14</u> |
| Plomb                         |              |        | 100 | <10            | 14            | <u>120</u>    | <u>76</u>   | <u>54</u>     | <u>87</u>        | <u>54</u>     | <u>34</u>      | <u>50</u>   | <u>99</u>   | -            | 45               | 50          | -            | 14      | 25               | <u>25</u> | 12          |
| Nickel                        |              |        | 130 | <1             | 36            | 32            | 30          | 34            | 30               | 44            | <u>38</u>      | 29          | 26          | _            | 30               | 49          | -            | 25      | 33               | 32        | 10          |
| Zinc                          |              |        | 250 | <10            | 33            | <u>300</u>    | <u>100</u>  | <u>130</u>    | <u>140</u>       | <u>70</u>     | <u>60</u>      | <u>96</u>   | <u>150</u>  | -            | 96               | 78          | -            | 31      | 50               | <u>53</u> | 15          |
| AUTRES ANALYSES               |              |        |     |                |               |               |             |               |                  |               |                |             |             |              |                  |             |              |         |                  |           |             |
| BTEX totaux                   | mg/kg MS     | 6      |     | <0,02 / <0,25* | <             | 0,73          | 0,1         | 0,29          | <                | 0,45          | <              | 0,13        | 34          | 25           | 1,2              | 3,5         | 1,8          | <       | 0,26             | <         | 0,14        |
| Somme des HAP                 | Trig/kg Wi3  | 50     |     | <0,16 / 0,32*  | <             | 97            | <           | 1,9           | 5,3              | 1,5           | 2,1            | 2,5         | 32          | 15           | 2,7              | 22          | 20           | 1,2     | 6,1              | 1,7       | 6,1         |
| PCB totaux                    | μg/kg MS     | 1 000  |     | <7             | -             | -             | -           | <             | <                | -             | -              | -           | -           | <            | -                | _           | <            | -       | -                | _         | -           |
| Hydrocarbures volatils C5-C10 |              |        |     | <10            | <             | <             | <           | -             | -                | <             | 48             | 21          | 220         | -            | 15               | 93          | -            | <       | 19               | <         | <           |
| Hydrocarbures totaux C10-C40  | mg/kg MS     | 500    |     | <20            | <             | 390           | <           | 1 300         | 8 200            | 120           | 6 700          | 2 400       | 11 000      | 9 100        | 990              | 41 000      | 49 000       | 510     | 5 000            | 650       | 960         |
| COT                           |              | 30 000 |     | <2 000         | -             | -             | -           | 17 000        | 22 000           | -             | -              | -           | -           | _            | -                | -           | 94 000       | -       | -                | -         | 1 - '       |

(1) Seuils ISDI issus de l'annexe II de l'arrêté du 12/12/2014 relatif aux conditions d'admission des déchets inertes dans les installations relevant des installations classées.

(2) Teneurs totales en éléments traces dans les sols pour les « Fortes anomalies naturelles » (seuil bas) issues du Courrier de l'environnement de l'INRA n°39 « Teneurs totales en « métaux lourds » dans les sols français - Résultats généraux du programme ASPITET », février 2000.

- : analyse non réalisée
- < : concentration inférieure à la limite de quantification du laboratoire
- XX: concentration en métaux supérieure à la concentration du fond géochimique défini par le point de référence GAL3-5\_S
- \* Limites de quantification différentes pour les packs ISDI réalisés sur les points GAL3-5\_S2 et GAL3-5\_S2bis. Les LQ de référence de ces deux analyses sont celles identifiées par un astérisque (\*)
- \*\* Les lettres N, S et E en fin de nom, correspondent aux partie nord, sud ou est des tranchées

Tableau 7 : Synthèse des résultats analytiques sur éluat des campagnes de sols de novembre 2019 et septembre 2020

|                       |          |       | Ouvrage   | GAL3-5_S2 | GAL3-5_S2bis | GAL3-5_T1S** | GAL3-5_T7N** |
|-----------------------|----------|-------|-----------|-----------|--------------|--------------|--------------|
| PARAMETRE             | Unité    | (1)   | Prof. (m) | 0,6-1     | 1,1-1,3      | 0,9-1,2      | 0-0,5        |
|                       |          |       | LQ        | Pack ISDI | Pack ISDI    | Pack ISDI    | Pack ISDI    |
| LIXIVIATION           |          |       |           |           |              |              |              |
| ELUAT METAUX          |          |       |           |           |              |              |              |
| Antimoine             |          | 0,06  | <0,039    | <         | 0,15         | <            | 0,095        |
| Arsenic               |          | 0,5   | <0,05     | 0,11      | <            | <            | 0,14         |
| Baryum                |          | 20    | <0,05     | 0,33      | 2,2          | 11           | 0,39         |
| Cadmium               |          | 0,04  | <0,004    | <         | <            | <            | <            |
| Chrome                |          | 0,5   | <0,01     | <         | <            | <            | <            |
| Cuivre                | ma/ka MS | 2     | <0,05     | <         | <            | 0,16         | <            |
| Mercure               | mg/kg MS | 0,01  | <0,0005   | <         | <            | <            | <            |
| Plomb                 |          | 0,5   | <0,1      | <         | <            | <            | <            |
| Molybdène             |          | 0,5   | <0,05     | 0,11      | 0,33         | <            | 0,32         |
| Nickel                |          | 0,4   | <0,1      | <         | <            | 0,1          | <            |
| Sélénium              |          | 0,1   | <0,039    | <         | <            | <            | <            |
| Zinc                  |          | 4     | <0,2      | <         | <            | <            | <            |
| ELUAT AUTRES ANALYSES |          |       |           |           |              |              |              |
| Fraction soluble      |          | 4 000 | < 500     | 1 460     | 1 580        | 9 120        | 2 920        |
| Indice phénol         |          | 1     | <0,1      | <         | <            | 0,18         | 0,12         |
| Fluorures             | mg/kg MS | 10    | <2        | 16        | 8,4          | <            | 5,6          |
| Chlorures             |          | 800   | <10       | 38        | 25           | 2 200        | 110          |
| Sulfates              | ]        | 1 000 | <10       | 759       | 438          | 107          | 782          |
| COD, COT sur éluat    |          | 500   | <5        | 40        | 56           | 120          | 320          |

(1) Seuils ISDI issus de l'annexe II de l'arrêté du 12/12/2014 relatif aux conditions d'admission des déchets inertes dans les installations relevant des rubriques 2515, 2516, 2517 et dans les installations de stockage de déchets inertes relevant de la rubrique 2760 de la nomenclature des installations classées

- < : concentration inférieure à la limite de quantification du laboratoire
- \*\* Les lettres N, S et E en fin de nom, correspondent aux partie nord, sud ou est des tranchées

Au vu des analyses réalisées, plusieurs polluants ont été détectés au-dessus des seuils de référence :

- Métaux sur brut → trois zones présentent des anomalies en cuivre, plomb et/ou zinc : anciennes cuves (0,3-1 m), ancien bourbier central (0,6-1,2 m) et anciens forages (0-1 m);
- BTEX → une zone présente des valeurs supérieures au seuil ISDI au droit de l'ancien bourbier central (0,9-1,2 m);
- HAP → un échantillon présente une concentration supérieure au seuil ISDI au droit des anciennes cuves (0,3-1 m);
- HCT (C10-C40) → quatre zones présentent des valeurs supérieures au seuil ISDI: ancien bourbier central (0,6-1,3 m), limites extérieures nord (0-1,8 m) et ouest (0,3-1 m) de l'ancien bourbier sud et au droit du piézomètre GAL3-5\_MW1 (0,4-1,5 m);
- COT → un échantillon présente une concentration supérieure au seuil ISDI en limite nord de l'ancien bourbier sud site (0-0,5 m);
- Analyse sur éluat → plusieurs zones dépassent les seuils ISDI : au droit de l'ancien bourbier central en antimoine (1,1-1,3 m), en fluorures (0,6-1 m), en fraction soluble et en chlorures (0,9-1,2 m) et en limite nord de l'ancien bourbier sud (0-0,5 m) en antimoine.

L'échantillon de produit pur issu de GAL3-5\_T9N, est majoritairement composé de C20-C40 (53%). La répartition des classes est présentée dans le Tableau 8.

Tableau 8 : Résultats analytiques de l'échantillon de produit pur (GAL3-5\_T9N) par GC-FID

| Répartition (%) | C10-C20 | C20-C30 | C30-C40 | C40-C50 | C50-C60 | C60-C70 | C70-C80 | C80 + |
|-----------------|---------|---------|---------|---------|---------|---------|---------|-------|
| GAL3-5_T9N      | 17      | 22      | 31      | 14      | 5       | 3       | 2       | 5     |

Les résultats du protocole de séparation de famille sont présentés dans le Tableau 9.

Tableau 9 : Résultats analytiques du protocole de séparation de famille de l'échantillon de produit pur (GAL3-5\_T9N)

| Répartition<br>(%) | Saturés | Aromatiques | Résines | Asphaltènes<br>(n-C5) |
|--------------------|---------|-------------|---------|-----------------------|
| GAL3-5_T9N         | 14      | 31          | 26      | 29                    |

### 5.3.3 Estimation des volumes de terres suspectes

Les volumes de terres potentiellement impactées sont estimés d'après les observations de terrain et les résultats analytiques, en comparaison aux valeurs références prédéfinies. Les volumes et les incertitudes sont présentés dans le Tableau 10.

Tableau 10 : Estimation des volumes de terres suspectes et des incertitudes

| Zone                                            | Ouvrages                            | Paramètres<br>sur brut en<br>dépassement<br>(1) (2) | Profondeur<br>potentiellement<br>impactée<br>(m) | Epaisseur<br>moyenne<br>potentiellement<br>impactée<br>(m) | Surface<br>potentiellement<br>impactée<br>(m²) | Volume<br>estimé (m³) | Incertitude | Commentaire                                                                                                                                                            |
|-------------------------------------------------|-------------------------------------|-----------------------------------------------------|--------------------------------------------------|------------------------------------------------------------|------------------------------------------------|-----------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GAL3-5                                          | _MW1                                | HCT (C10-<br>C40)                                   | 0,4-1,5                                          | 1,1                                                        | 62                                             | 68                    | Elevée      | Limites définies au sud par GAL3-5_T5N et au nord par GAL3-5_S12 (éloigné). Pas de délimitation à l'est et à l'ouest (positionnées à 3,5 m de l'ouvrage).              |
| Anciens forages                                 | GAL3-5_S3                           | Cu                                                  | 0-1                                              | 1                                                          | 16                                             | 16                    | Elevée      | Limites latérales non définies (positionnées à 2 m de l'ouvrage).                                                                                                      |
| Anciennes cuves                                 | GAL3-5_S1                           | Cu, Pb, Zn et<br>HAP                                | 0,3-1,2                                          | 0,9                                                        | 43                                             | 39                    | Faible      | Délimitation par les sondages GAL3-5_S10 à GAL3-5_S13.                                                                                                                 |
| Limite ext. ouest de l'ancien bourbier sud      | GAL3-5_S14                          | HCT (C10-<br>C40)                                   | 0,3-1                                            | 0,7                                                        | 25                                             | 18                    | Elevée      | Limite définie à l'est par le bourbier. Pas<br>de délimitation à l'ouest (limite de<br>parcelle), au sud et au nord<br>(positionnées à 4 m de l'ouvrage).              |
| Limite ext. nord<br>de l'ancien<br>bourbier sud | GAL3-5_T7N-<br>T9N                  | HCT (C10-<br>C40) et COT                            | 0,1-1,7                                          | 1,6                                                        | 154                                            | 246                   | Elevée      | Limites définies au sud par le bourbier, à l'est par GAL3-5_S15 (éloigné) et à l'ouest par GAL3-5_T5N. Pas de délimitation au nord (positionnée à 2,5 m de l'ouvrage). |
| Ancien bourbier central                         | GAL3-5_T1-T4<br>GAL3-<br>5_S2/S2bis | Cu, BTEX, HCT<br>(C10-C40)                          | 0,6-1,5                                          | 0,4                                                        | 318                                            | 127                   | Faible      | Limites bien définies par les tranchées GAL3-5_T1 à GAL3-5_T4 mais étendues aux limites de l'ancien bourbier pour plus de certitudes.                                  |
| Total                                           | ·                                   |                                                     |                                                  | ·                                                          |                                                | 514 m <sup>3</sup>    |             | ·                                                                                                                                                                      |

<sup>(1)</sup> Seuils ISDI issus de l'annexe II de l'arrêté du 12/12/2014 relatif aux conditions d'admission des déchets inertes dans les installations relevant des rubriques 2515, 2516, 2517 et dans les installations de stockage de déchets inertes relevant de la rubrique 2760 de la nomenclature des installations classées.

<sup>(2)</sup> Teneurs totales en éléments traces dans les sols pour les « Fortes anomalies naturelles » (seuil bas) issues du Courrier de l'environnement de l'INRA n°39 « Teneurs totales en « métaux lourds » dans les sols français - Résultats généraux du programme ASPITET », février 2000.

Lorsque cela était possible, les limites des zones impactées ou potentiellement impactées ont été positionnées à équidistance de deux ouvrages, l'un identifié comme impacté et l'autre non. Les délimitations établies par les bordures des bourbiers ne sont pas soumises à ce choix et constituent une limite franche. Enfin, lorsqu'aucun ouvrage ne permettait de positionner une limite, celle-ci a été arbitrairement placées entre 2 et 4 m en fonction des observations de terrain.

L'épaisseur moyenne du niveau suspect a été calculé sur chaque zone d'après les coupes des ouvrages, puis multipliée par la surface estimée afin d'obtenir le volume de terres potentiellement impactées. Les incertitudes définies sont données à titre informatif.

La quantité totale des terres suspectes sur le site GAL3-5 est estimée à environ 500 m³, principalement concentrée au niveau du bourbier au centre du site et au nord du bourbier sud. Les zones identifiées sont présentées en Figure 6.

### 6. CONCLUSION ET RECOMMANDATIONS

Au vu des résultats de la campagne de novembre 2019, des impacts liés aux activités de production d'huile lourde sont encore mesurables sur le site. En particulier, des anomalies ont été mises en évidence en hydrocarbures, en HAP et métaux au niveau d'un ancien bourbier (centre du site) et d'anciennes cuves.

Les investigations complémentaires réalisées en septembre 2020 confirment les impacts en hydrocarbures et en métaux au niveau du bourbier (centre site) et mettent en évidence d'autres anomalies en particulier en BTEX et chlorures.

Aucune concentration en HAP n'a en revanche été supérieure à la valeur de référence durant cette campagne.

Des anomalies ont été identifiées en l'absence de structures historiques connues au droit des ouvrages réalisés. Des impacts en hydrocarbures et/ou en COT ont été mis en évidence à l'extérieur de l'ancien bourbier situé au sud du site (bordures nord et ouest) et lors du forage d'un piézomètre.

Les teneurs mesurées dans les eaux souterraines sont toutes inférieures aux seuils de référence. De faibles concentrations en hydrocarbures ont cependant été détectées dans la partie aval du site.

D'après les résultats analytiques et les observations de terrain, le volume de terres suspectes a été estimé à environ 500 m³ sur l'ensemble du site, principalement autour ou au droit d'anciens bourbiers. Certaines zones n'ont pas pu être complètement circonscrites et laissent une incertitude significative quant au volume estimé.

Compte tenu de l'usage sensible de la zone et de l'absence de maitrise foncière par Total, il est recommandé d'établir un plan de gestion suivant les principes de la méthodologie nationale de gestion des sites et sols pollués.

### LIMITATION

### Limitations Générales et Reliance

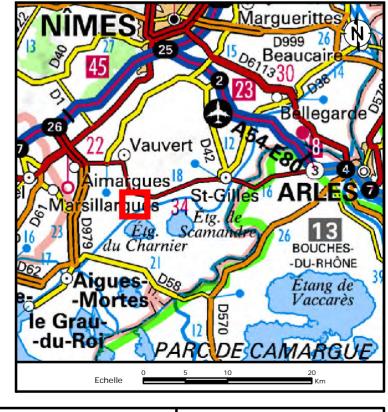
Ramboll France SAS ("Ramboll") a rédigé ce rapport à l'usage exclusif de RETIA selon l'accord entre Ramboll et le client (propositions FRTOTMS020-P1.V3 du 30 août 2019, en date du 30 août 2019 et FRTOTMS020-P2.V3, en date du 19 juin 2020) qui établit, en autres, l'objectif, le champ et les termes et conditions de la mission. Aucune autre garantie, exprimée ou implicite, n'est donnée quant aux conseils professionnels inclus dans ce rapport ou concernant toute question en dehors du champ d'application convenu des services ou de l'objectif pour lequel le rapport et le champ d'application convenu associé étaient prévus ou tout autre service fourni par Ramboll.

Afin de mener à bien sa mission et de rédiger ce rapport, Ramboll s'est appuyé sur des informations publiques, sur les informations fournies par le client et sur les informations fournies par des tiers. En conséquence, les conclusions présentées dans ce rapport ne sont valides que dans la mesure où les informations fournies à Ramboll étaient correctes et exhaustives et facilement accessibles à la date d'émission du rapport.

L'évaluation de Ramboll n'a pas de valeur juridique, et ne représente pas une évaluation exhaustive de l'état du site ou de la conformité des installations. Le présent rapport et les documents qui l'accompagnent sont initiaux et destinés à l'usage et au bénéfice du client à cette seule fin et ne peuvent être utilisés ou divulgués, en tout ou en partie, à toute autre personne sans le consentement écrit exprès de Ramboll. Ramboll ne doit ni n'accepte aucun devoir envers une tierce partie, à moins que Ramboll ne l'ait formellement accepté en concluant, à la seule discrétion de Ramboll, un accord de confiance écrit.

Sauf spécification contraire, l'étendue des services, les évaluations et conclusions présentées dans ce rapport s'appuient sur le postulat que le site continuera à être utilisé pour le même type d'usage, sans changements majeurs sur site ou autour du site.

### Limitations du champ d'application et exceptions de l'évaluation


Ramboll a réalisé cette évaluation conformément au champ d'application déterminé dans nos propositions FRTOTMS020-P1.V3 du 30 août 2019, en date du 30 août 2019 et FRTOTMS020-P2.V3, en date du 19 juin 2020.

Sites du Languedoc – Rapport sur les investigations et les prélèvements libératoires réalisés sur le site de Gallician 3 et 5 (GAL3 et GAL5)

Figure 1 : Localisation du site







RAMBOLL

Client : TOTAL - RETIA

Projet N°: FRTOTMS020-P2

Concessions du Languedoc

GAL003-005 Vauvert (30), FRANCE Figure 1 : Carte de localisation du site GAL3-5

Dessiné par: VDA Vérifié par : ADE Service Layer Credits. 0 OpenServeNap (send) Contributors. CC-87-SA

Version : 01 Date : 26/11/2020

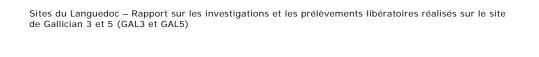
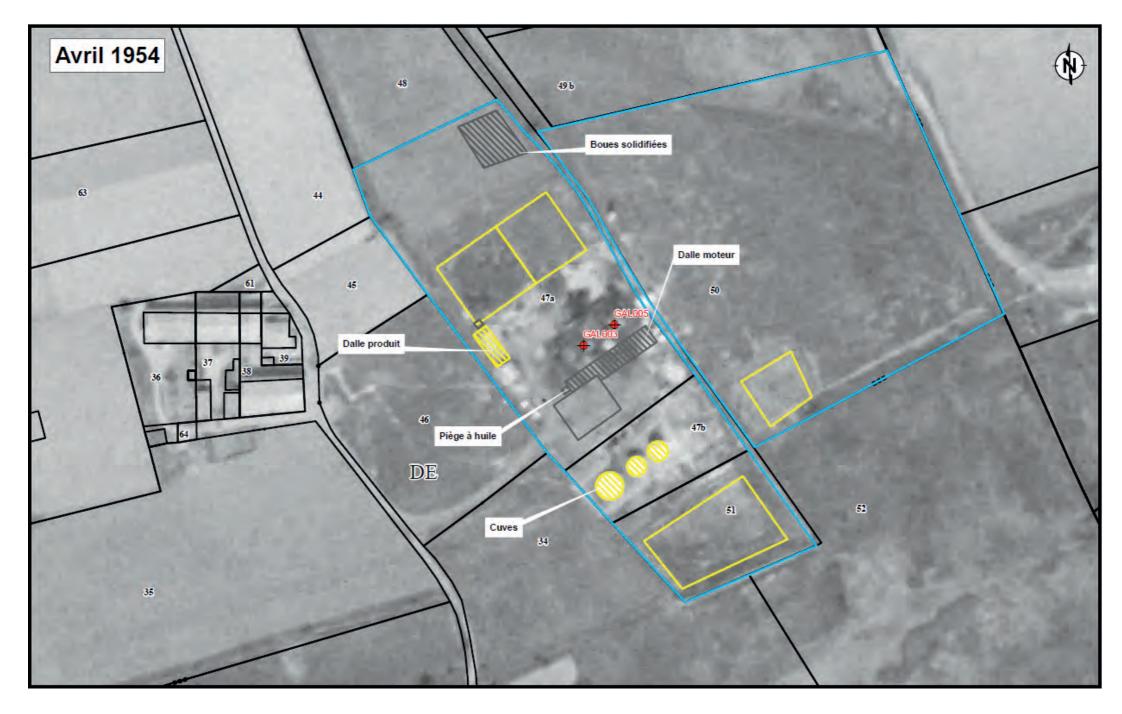





Figure 2 : Synthèses des infrastructures observées par photographie aérienne ou sur plan (GAL3-5)





Projet N°: FRTOTMS020-P2 Client: RETIA

## Concessions du Languedoc

GAL003-005 Vauvert (30), France

| Figure 2a : Synthèses des infrastructures observées par |  |
|---------------------------------------------------------|--|
| photographie aérienne ou sur plan (GAL3-5)              |  |

| Dessiné par : VDA | Vérifié par : ADE | Service Layer Credits. |
|-------------------|-------------------|------------------------|
| Version: 01       | Date: 26/11/2020  |                        |

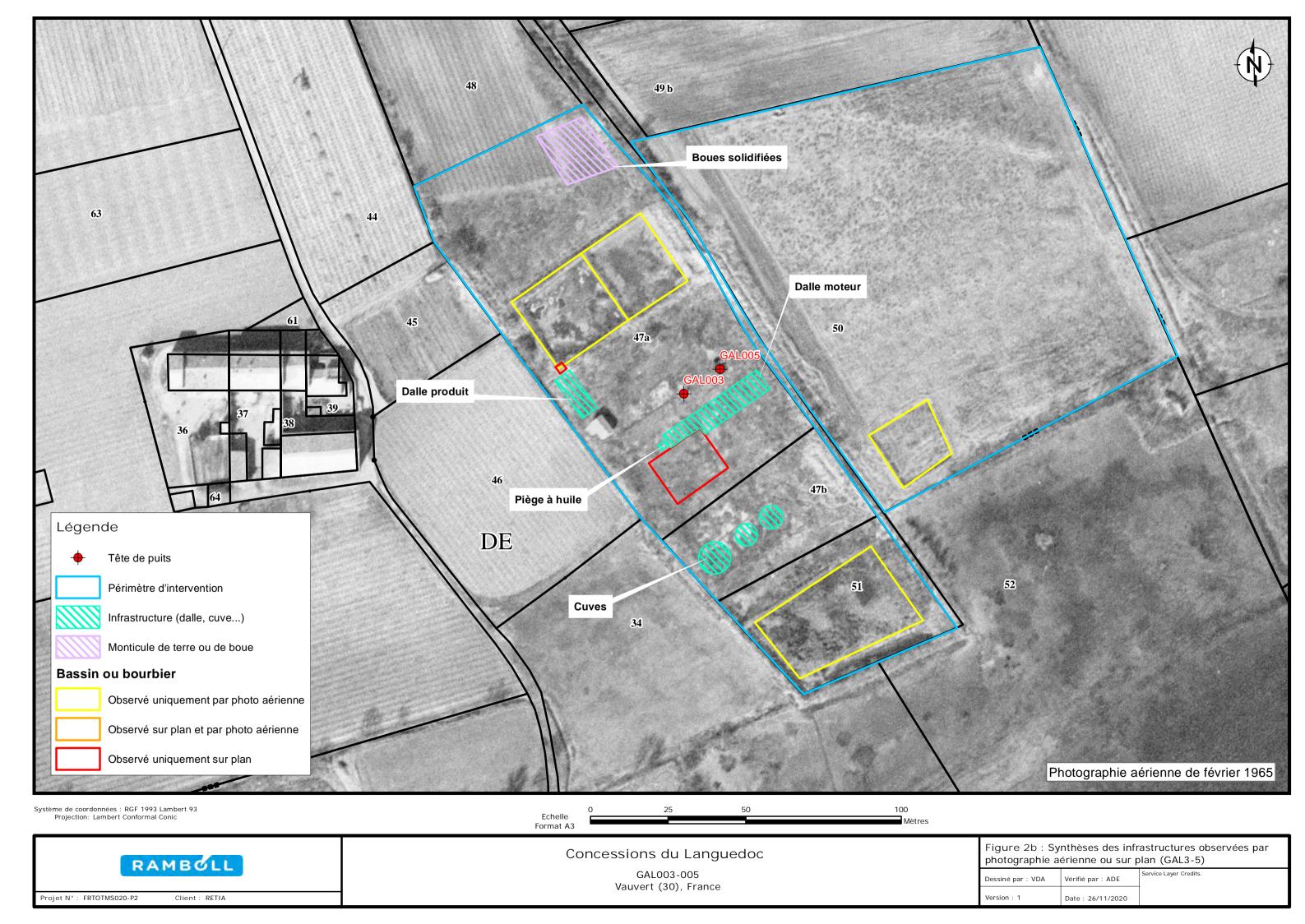
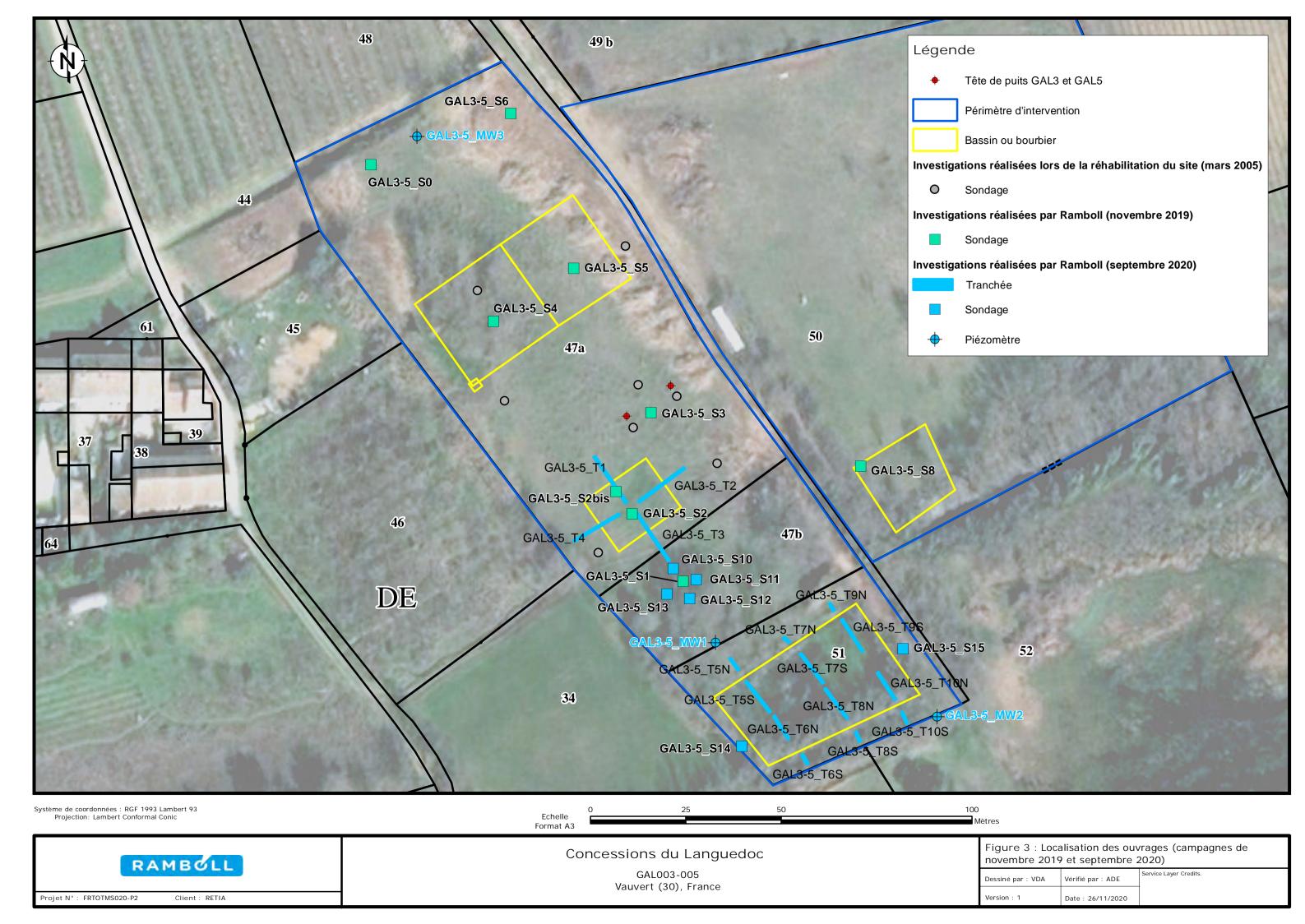



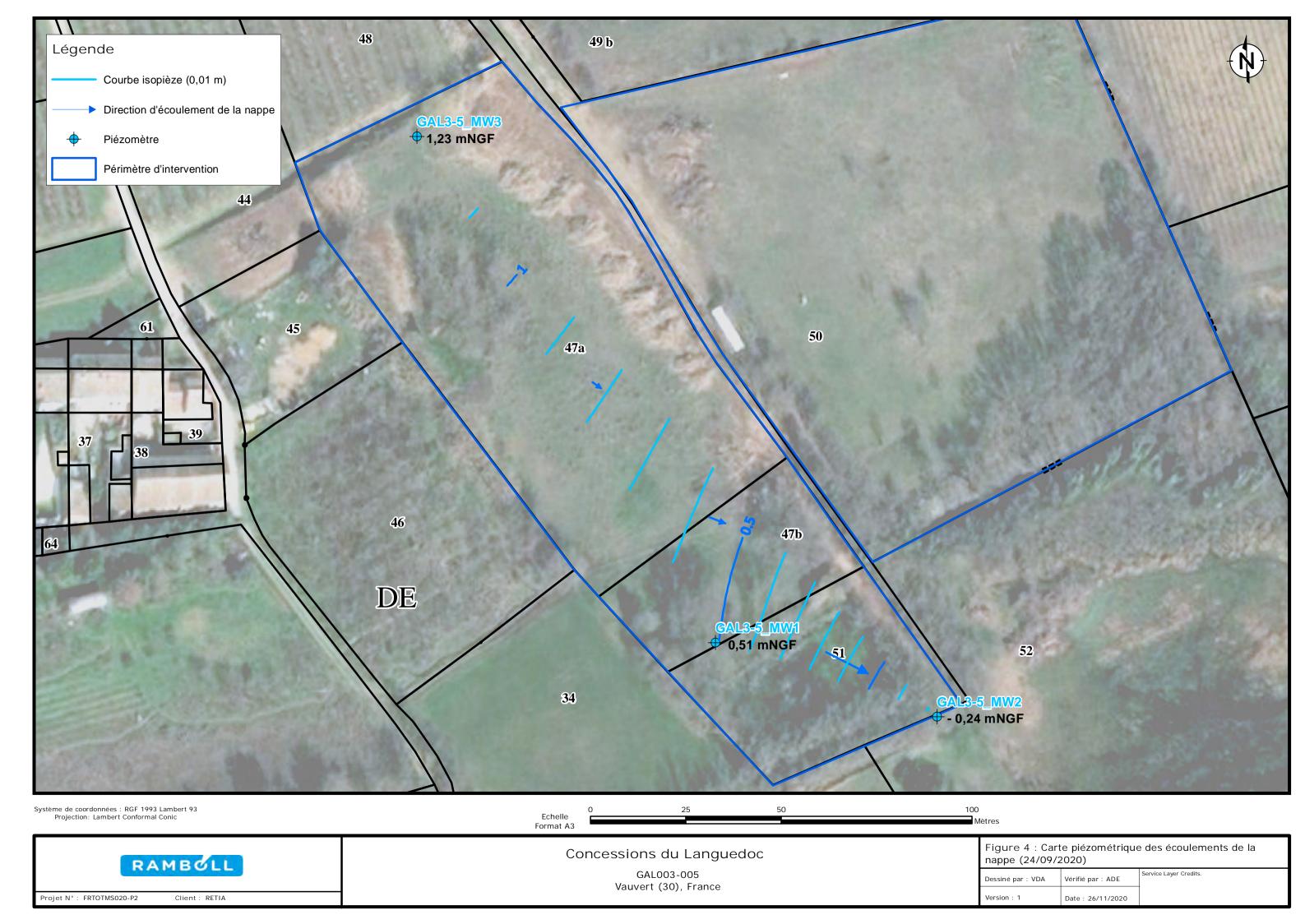
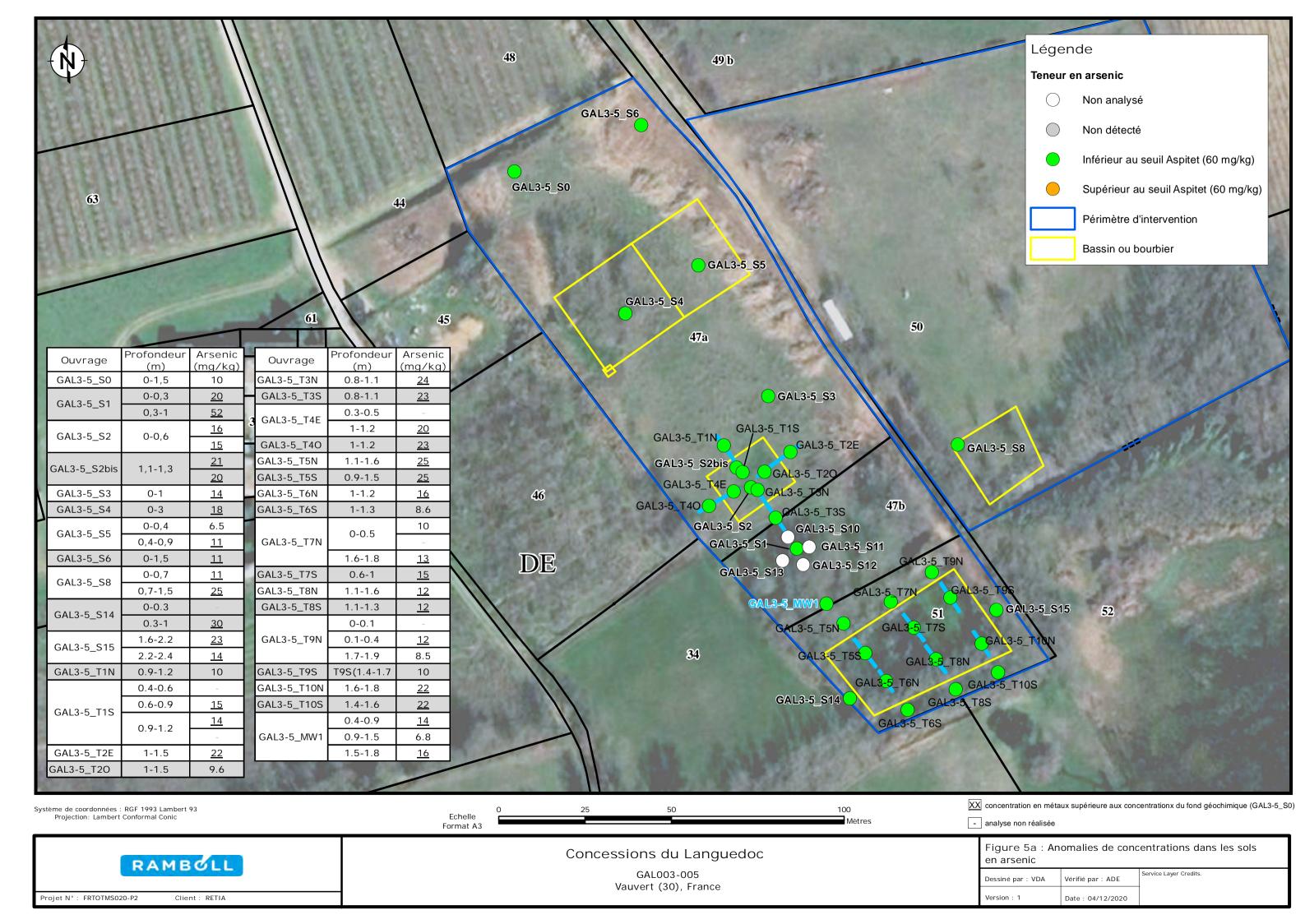
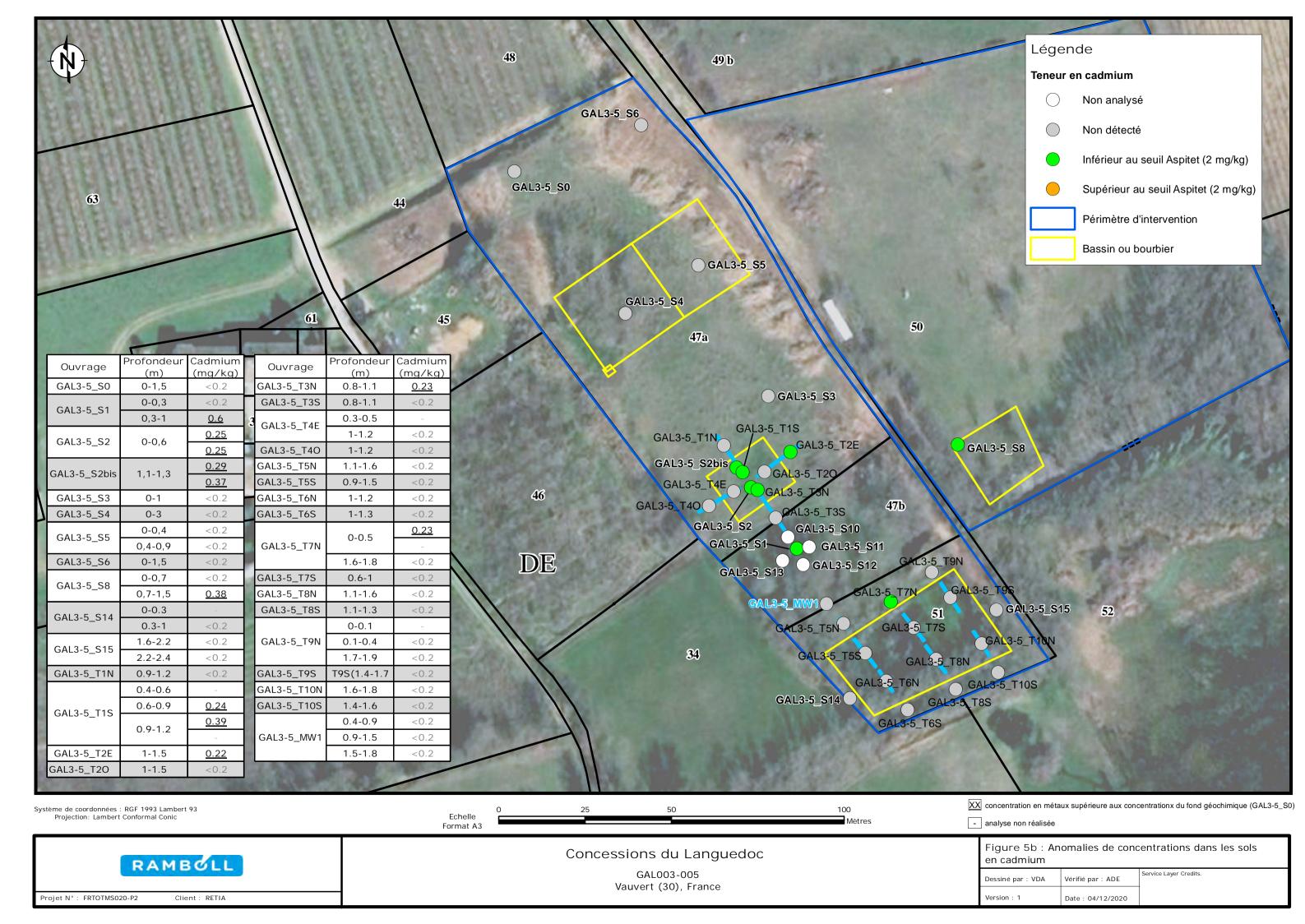
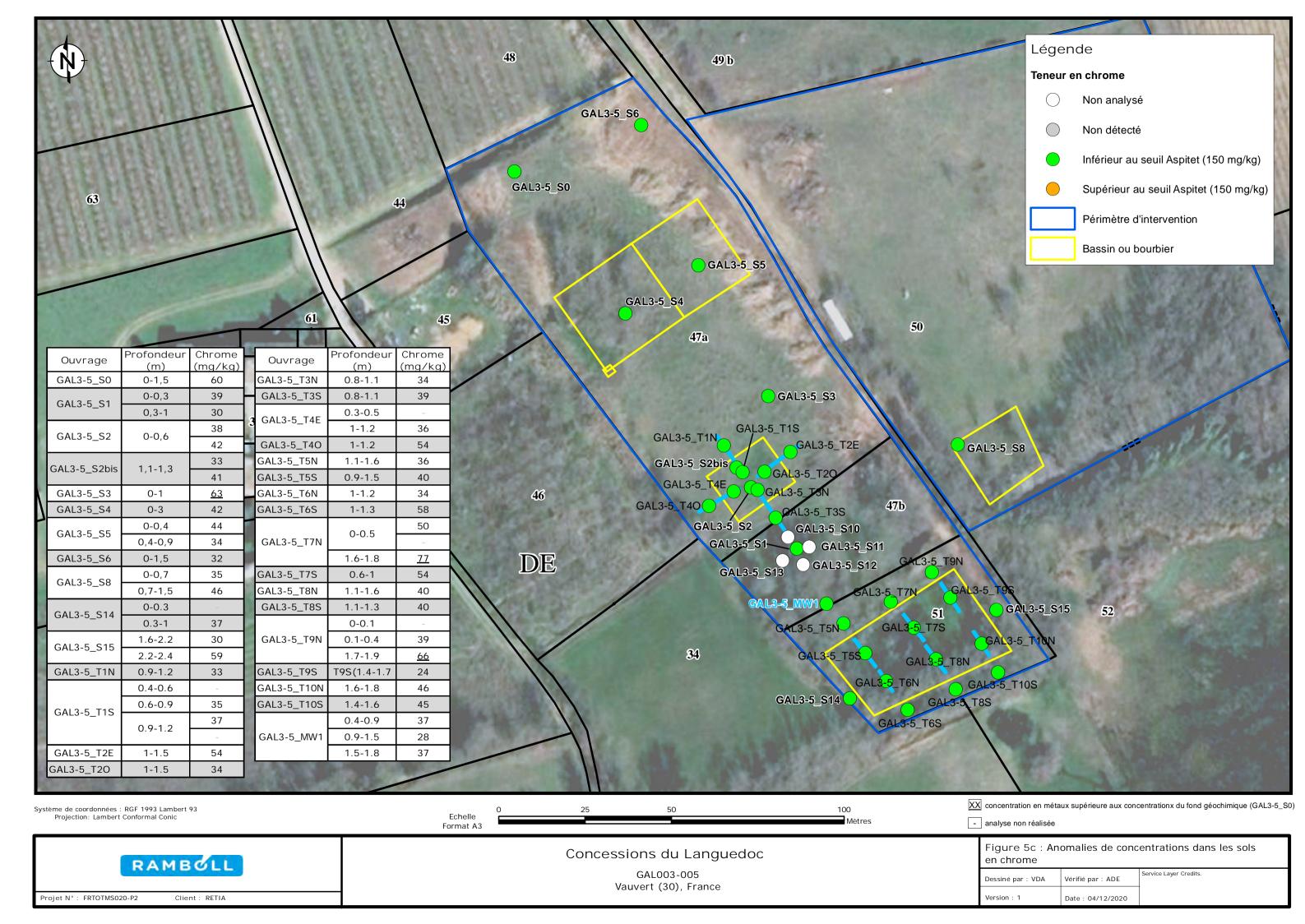


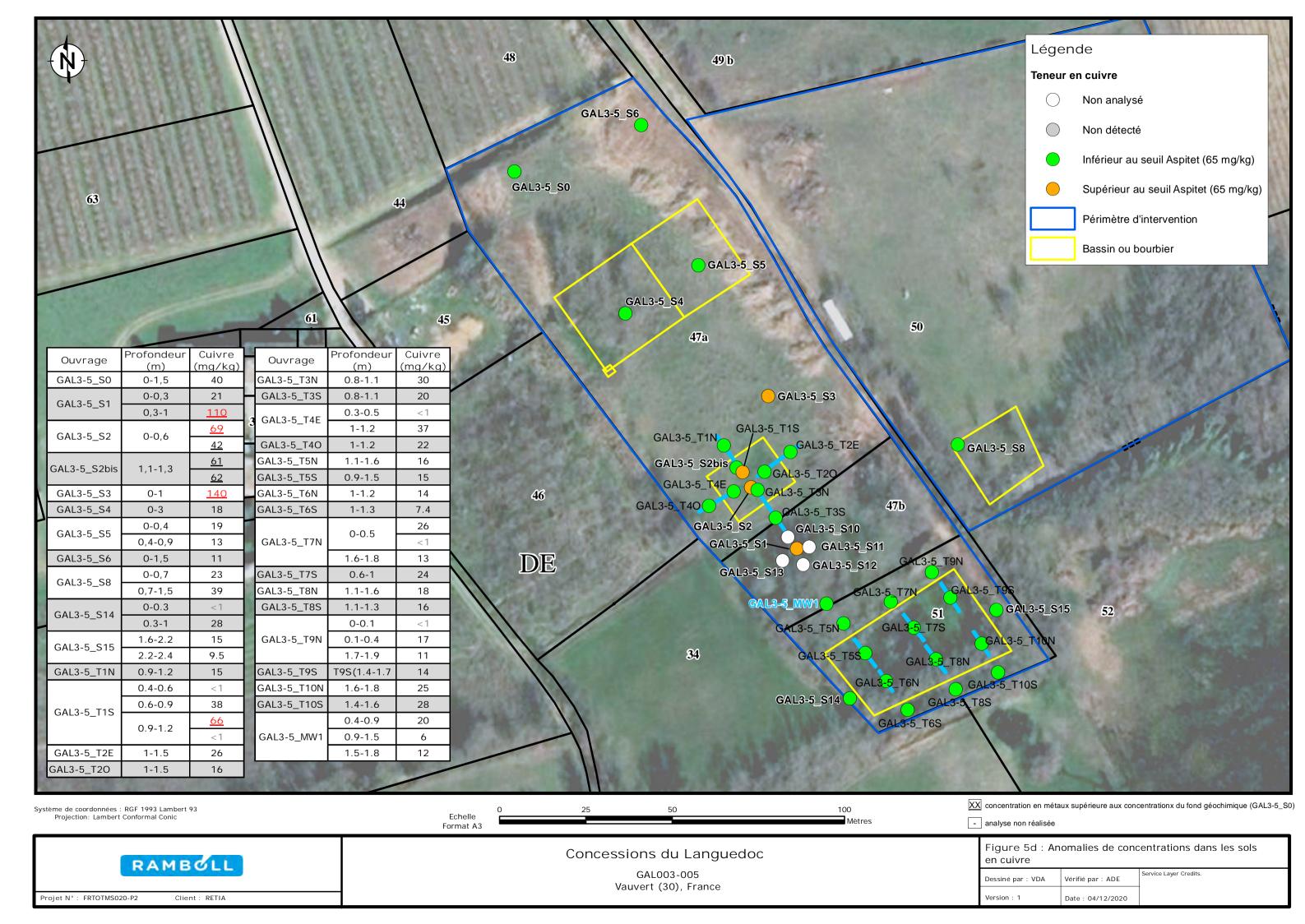

Figure 3 : Localisation des différents sondages réalisés sur site (GAL3-5)

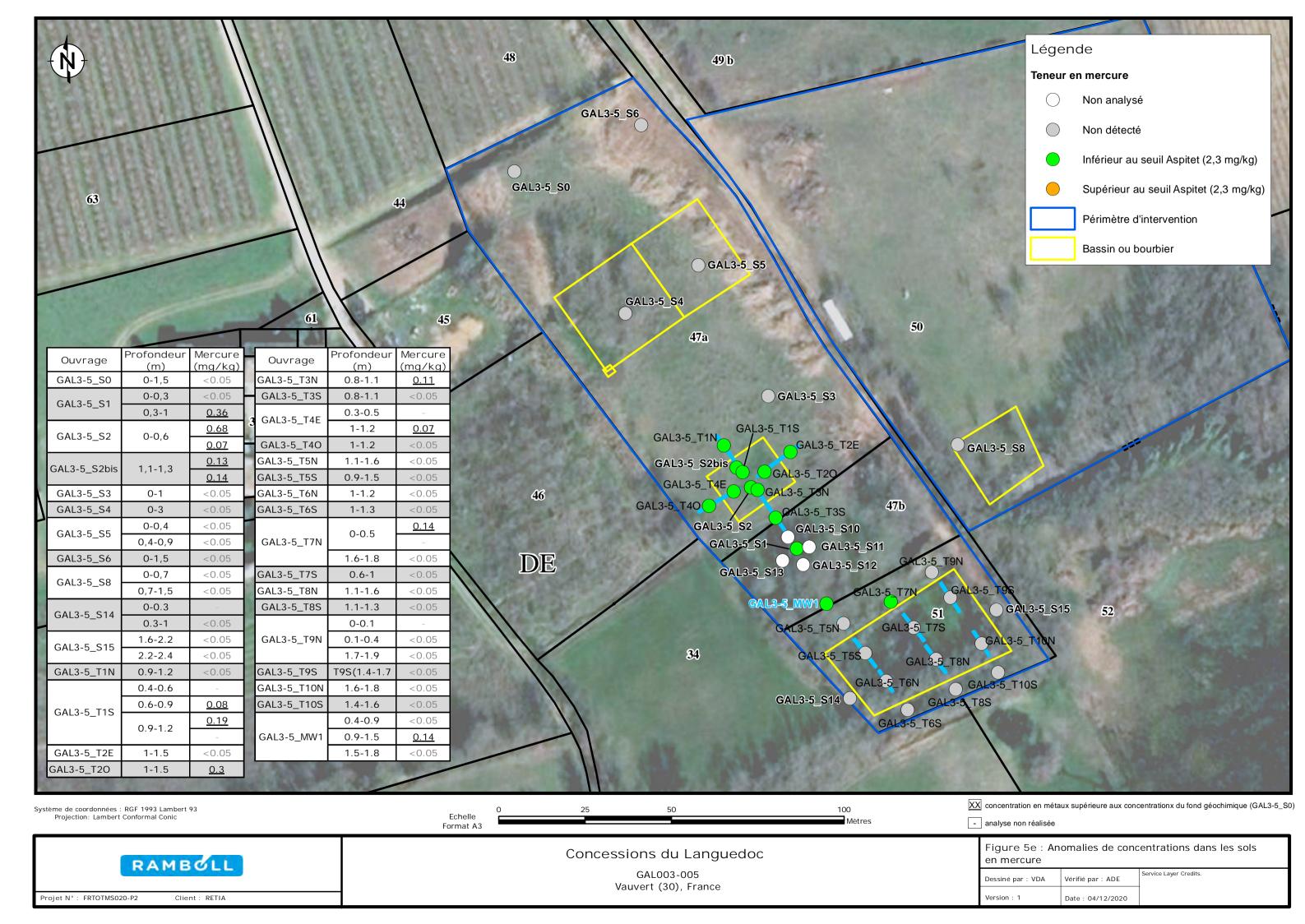


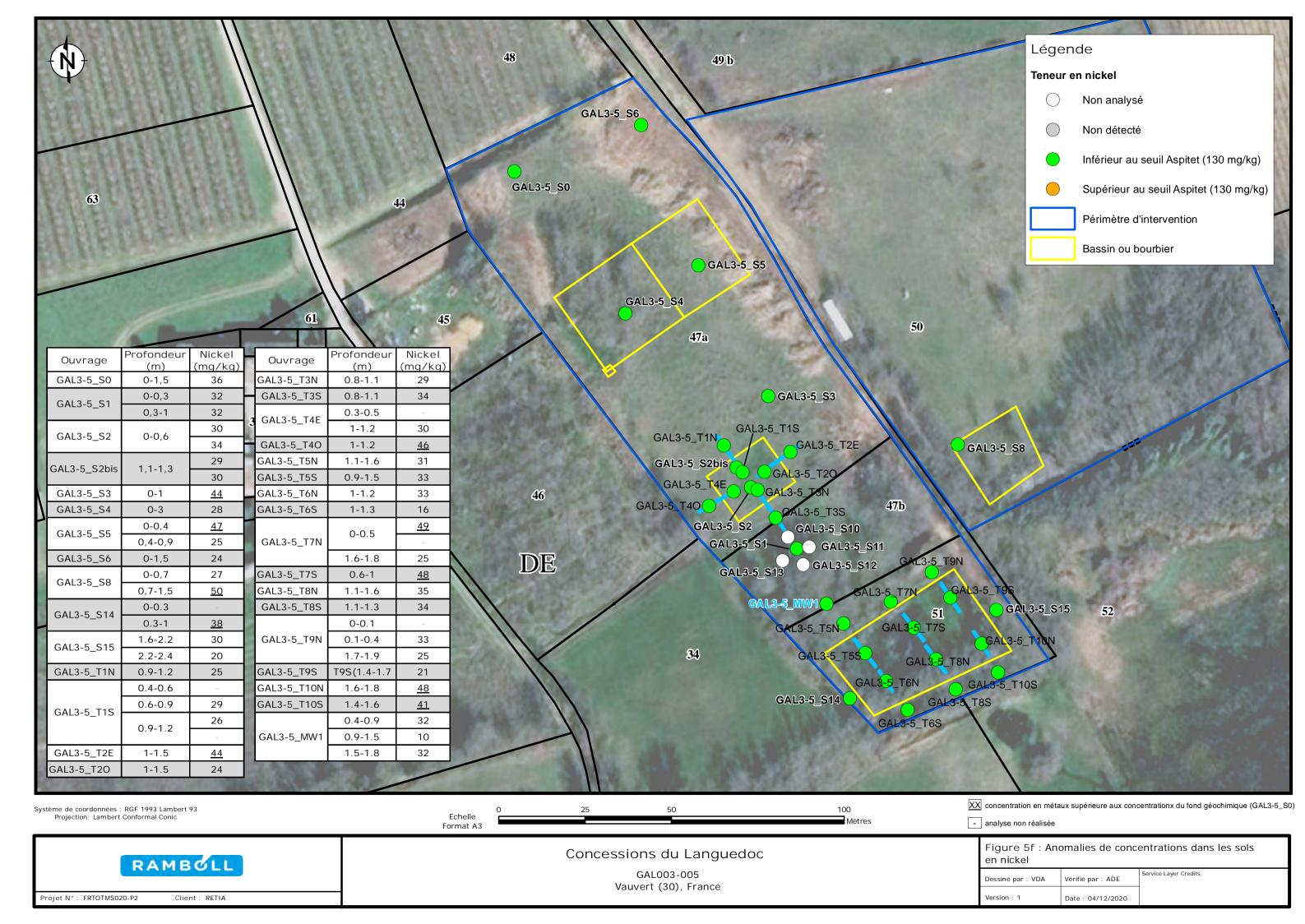
Sites du Languedoc – Rapport sur les investigations et les prélèvements libératoires réalisés sur le site de Gallician 3 et 5 (GAL3 et GAL5)

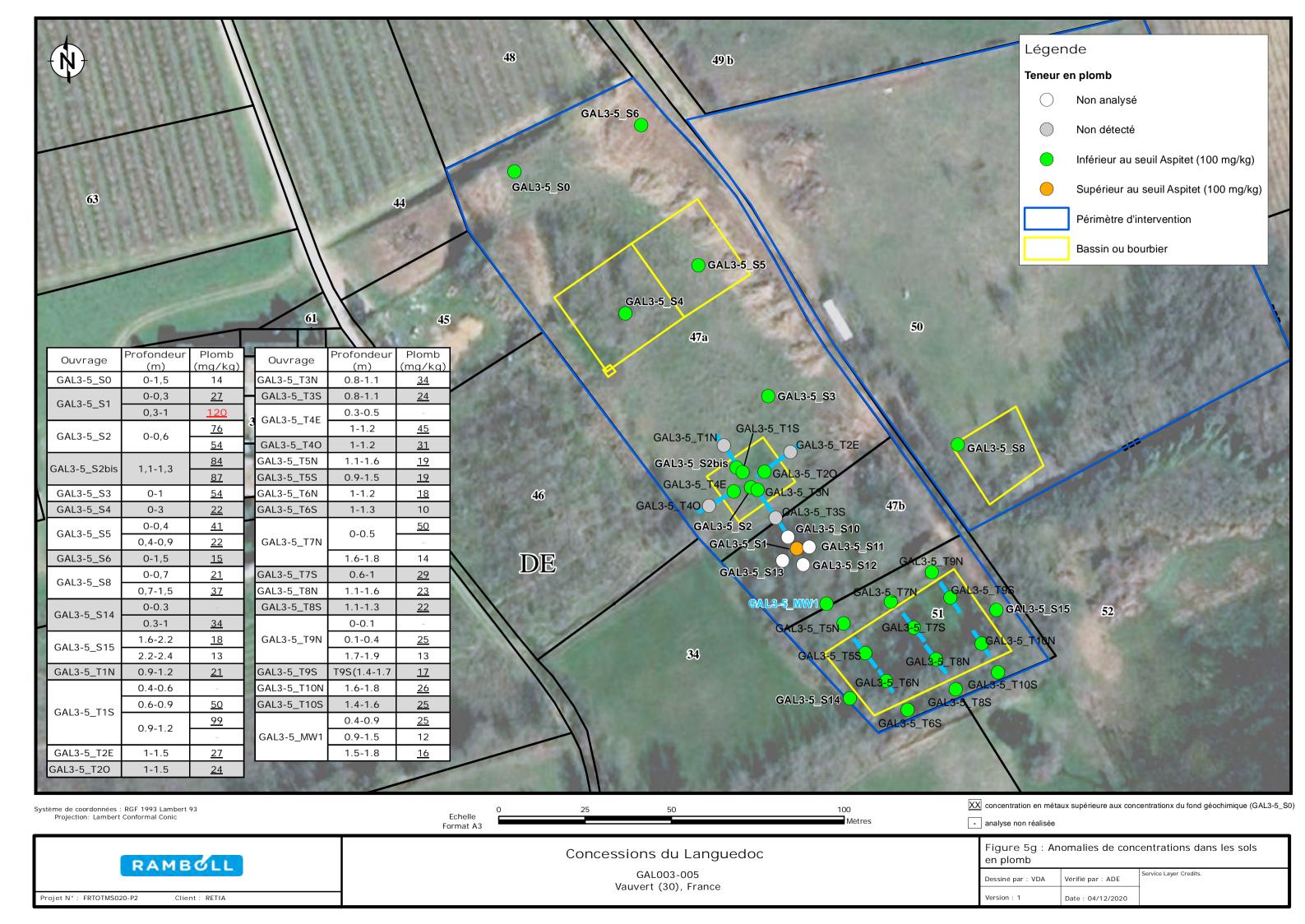
Figure 4 : Carte piézométrique du 24 septembre 2020

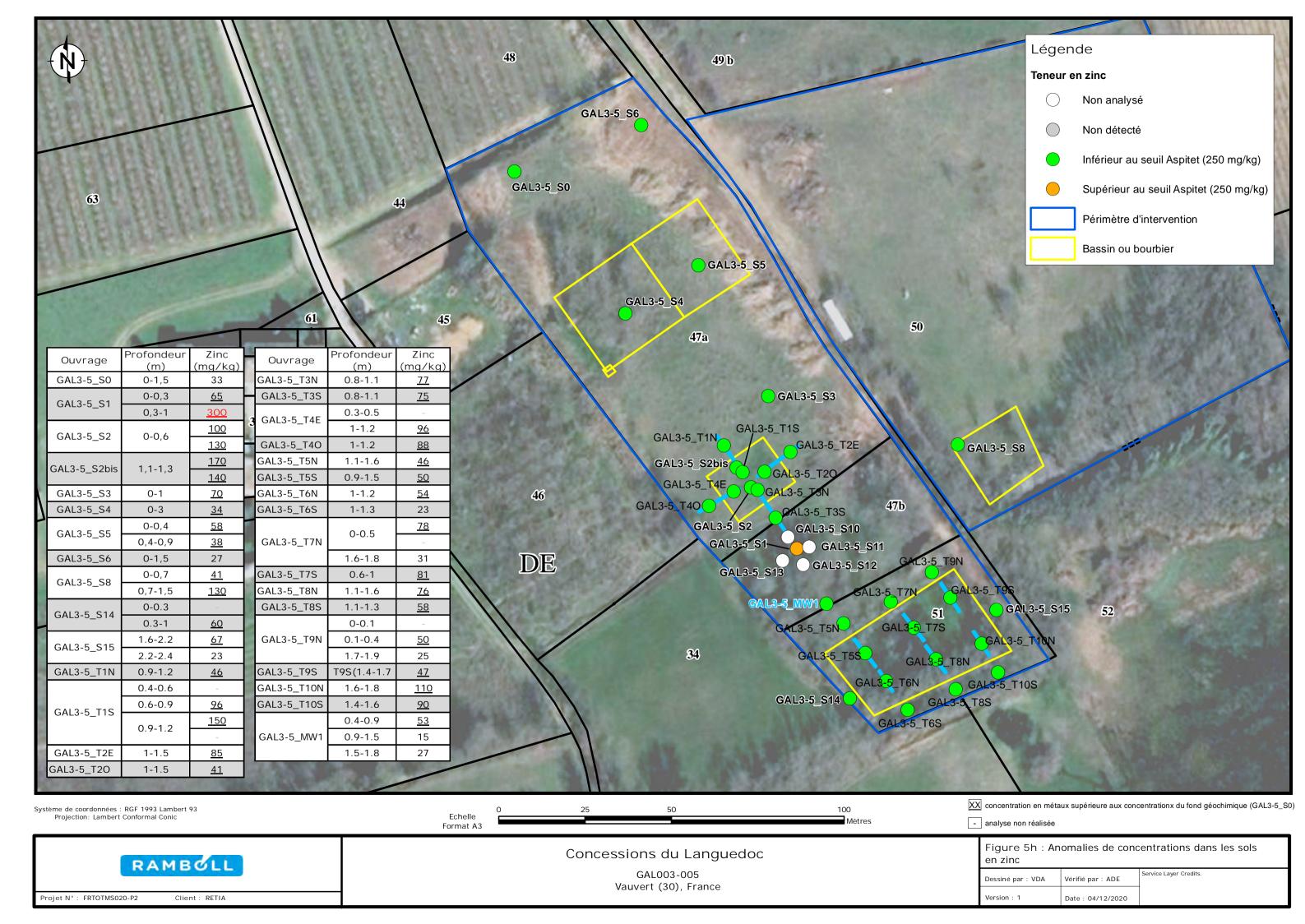





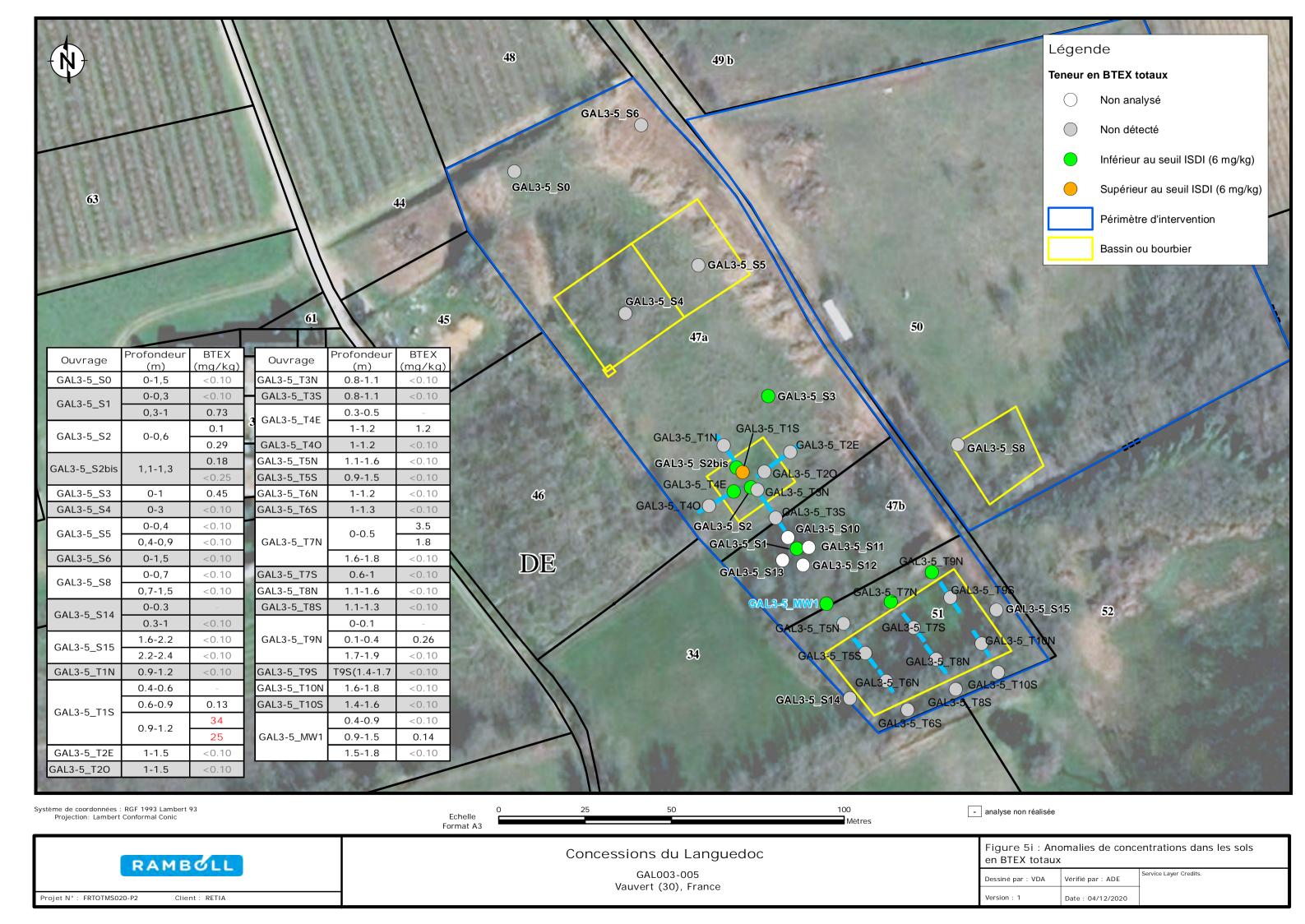



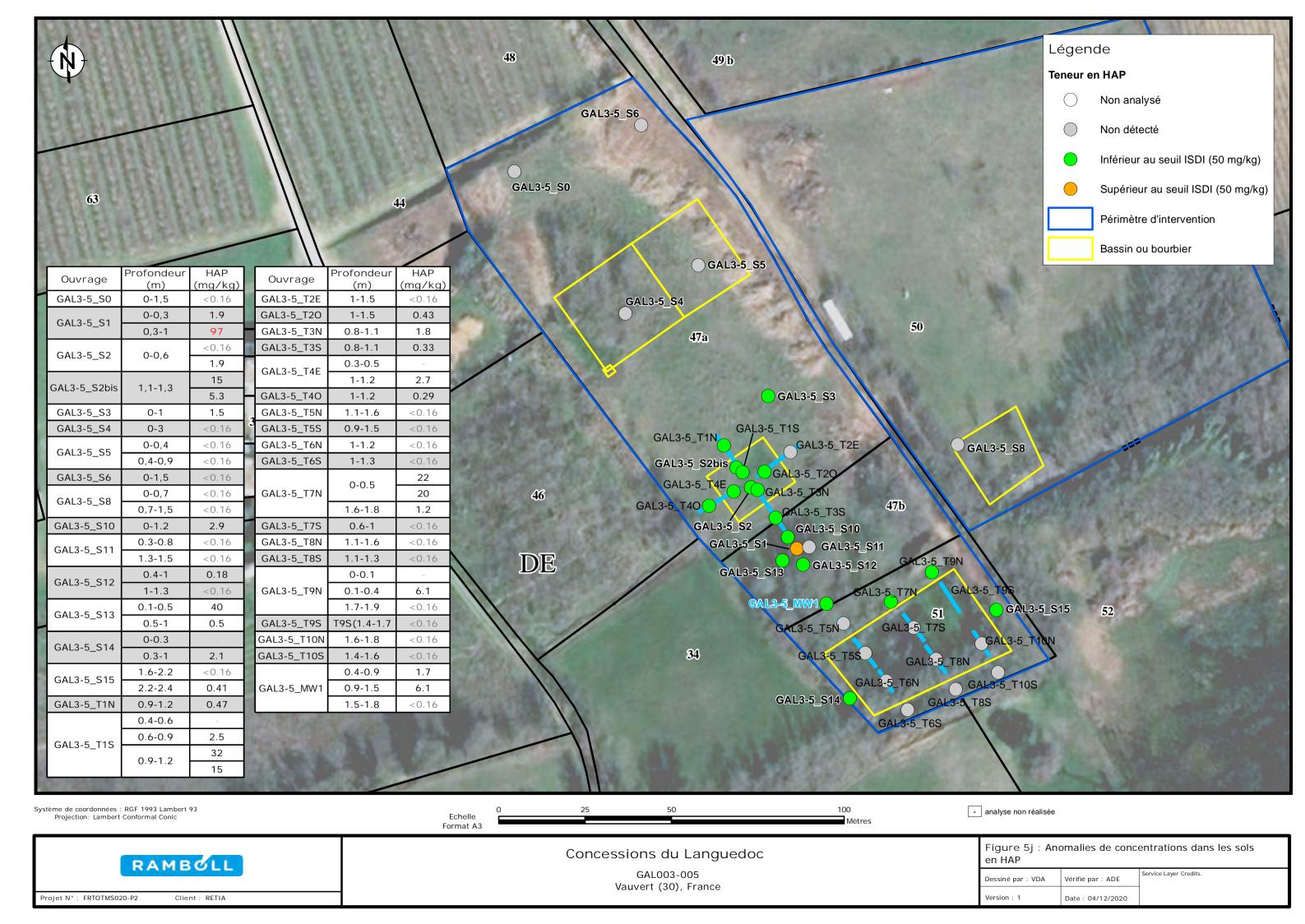


Figure 5 : Anomalies des concentrations dans les sols - Campagnes de novembre 2019 et septembre 2020













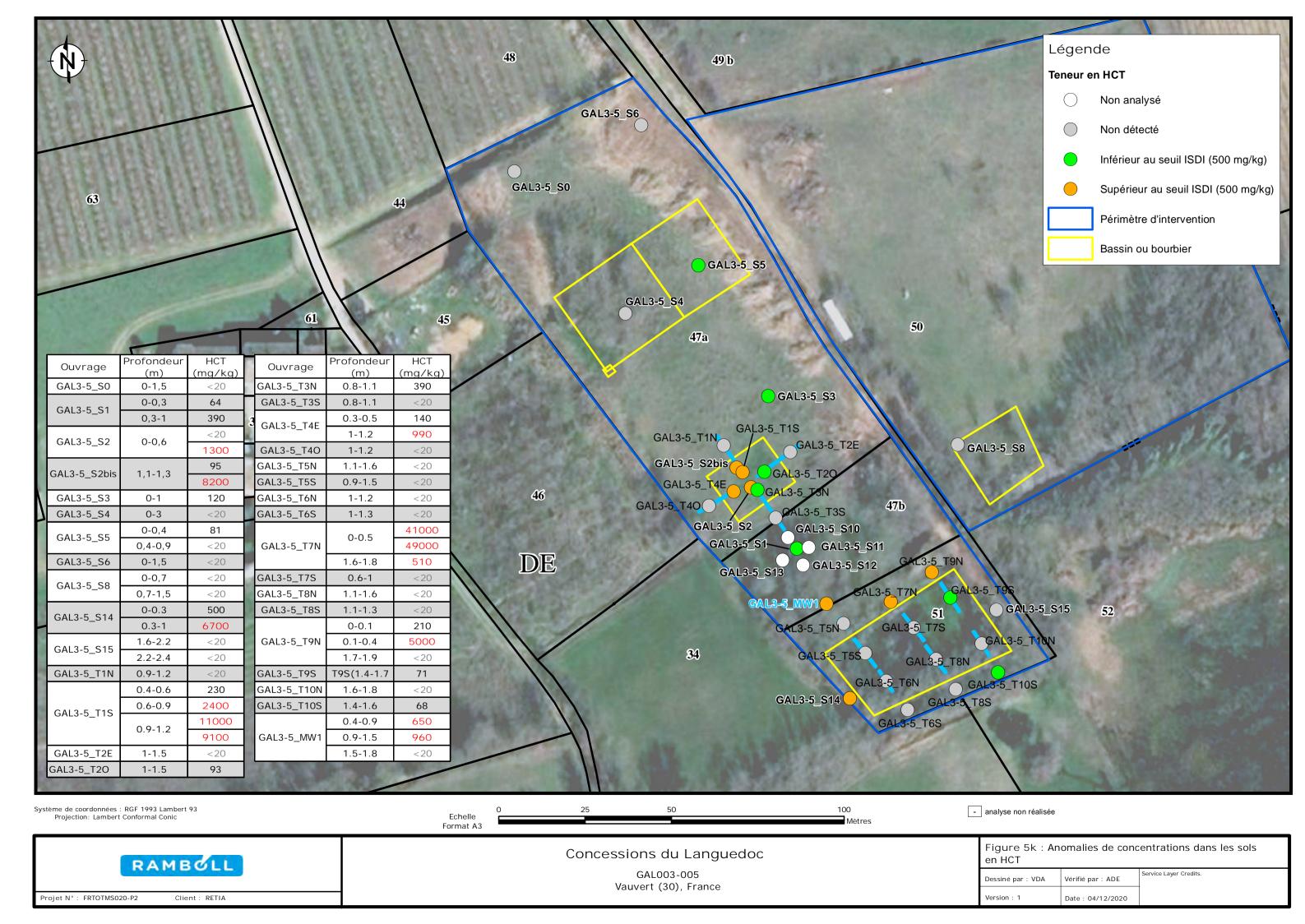
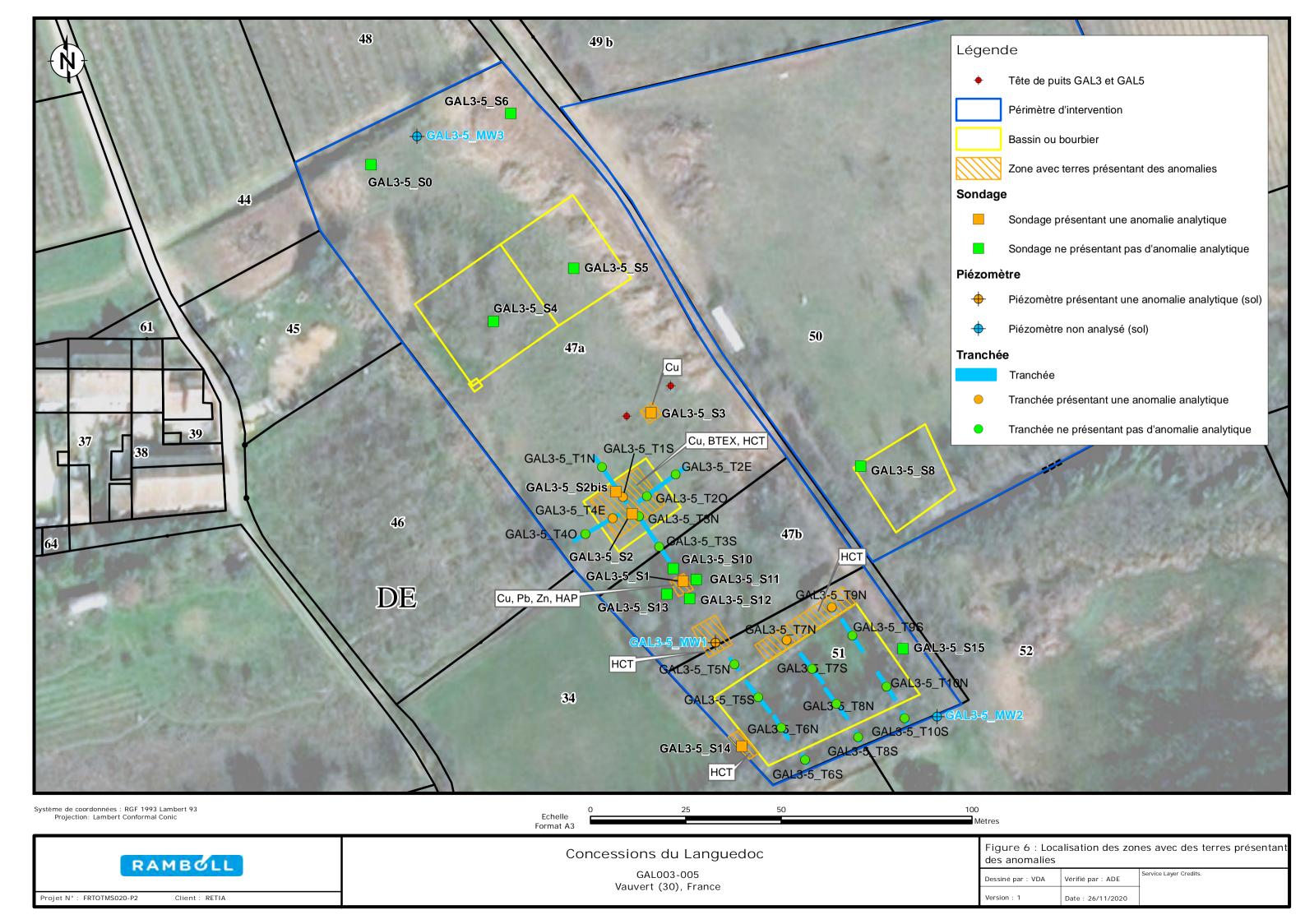







Figure 6 : Localisation des zones de terres présentant des anomalies



| Sites du Languedoc – Rapport sur les investigations et les prélèvements libératoires réalisés sur le site de Gallician 3 et 5 (GAL3 et GAL5) |
|----------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                              |
|                                                                                                                                              |
|                                                                                                                                              |
|                                                                                                                                              |
|                                                                                                                                              |
|                                                                                                                                              |
|                                                                                                                                              |
| ANNEXE 1                                                                                                                                     |
| RESULTATS ANALYTIQUES – AUDIT ENVIRONNEMENTAL DE MARS 2005                                                                                   |
|                                                                                                                                              |
|                                                                                                                                              |
|                                                                                                                                              |
|                                                                                                                                              |
|                                                                                                                                              |
|                                                                                                                                              |
|                                                                                                                                              |
|                                                                                                                                              |
|                                                                                                                                              |
|                                                                                                                                              |
|                                                                                                                                              |

#### PRELEVEMENTS DU 09 MARS 2005

| PRELEVEMENTS DE SOL                             | Siccite        | Cailloux     | pH de la<br>terre | Indice<br>Hydro<br>carbures | Hg      | As       | Cd        | Cr       | Cu    | Ni | Pb  | Zn        | Ca | Ва |
|-------------------------------------------------|----------------|--------------|-------------------|-----------------------------|---------|----------|-----------|----------|-------|----|-----|-----------|----|----|
|                                                 | % p            | oids         |                   |                             |         |          |           |          | mg/kg |    |     |           |    |    |
| Sdg 1 0/-0,40m                                  | 93.31          | 56.6         | 8.43              | <100                        | 0.015   | 3        | <1        | 25       | 7     | 12 | 27  | 21        |    |    |
| Sdg 1 - 0,40 / - 2,10m                          | 79.61          | 9.5          | 8.36              | <100                        | 0.02    | 8        | <1        | 60       | 17    | 30 | 21  | 42        |    |    |
| Sdg 1 - 2,10 / -2,60m                           | 84.64          | 64.0         | 8.29              | <100                        | 0.014   | 21       | <1        | 88       | 22    | 44 | 23  | 41        |    |    |
|                                                 |                |              |                   |                             |         |          |           |          |       |    |     |           |    |    |
| Sdg 2 0/-0,30 m                                 | 71.96          | 3.1          | 8.03              | 5 700                       | 0.554   | 7        | <1        | 63       | 49    | 34 | 113 | 70        |    |    |
| Sdg 2 - 0,30 / - 0,80 m                         | 77.67          | 26.0         | 8.16              | 2 600                       | 0.071   | 6        | <1        | 55       | 23    | 26 | 39  | 49        |    |    |
| Sdg 2 - 0,80 / - 1,60m                          | 82.49          | 62.5         | 7.99              | 320                         | 0.033   | 16       | <1        | 79       | 23    | 43 | 26  | 50        |    |    |
| Cda 2 0 / 0 45m                                 | 02.44          | (7.4         | 7.07              | 450                         | 0.067   | 48       | .1        | 24       | 13    | 10 | 13  | FO        |    |    |
| Sdg 3 0 / - 0,45m                               | 93.44          | 67.4         | 7.96              | 450                         |         |          | <1        | 24       |       | 30 | 347 | 58        |    |    |
| Sdg 3 - 0,45 / - 0,70m                          | 70.38          | 34.0         | 8.06              | 2 200                       | 0.277   | 33       | 1         | 48       | 128   |    |     | 240       |    |    |
| Sdg 3 - 0,70 / -2,0m                            | 80.19          | 59.7         | 8.01              | <100                        | 0.020   | 12       | <1        | 71       | 20    | 38 | 19  | 42        |    |    |
| Sdg 4 0 / - 0,45 m                              | 95.30          | 42.2         | 7.97              | 460                         | 0.035   | 5        | <1        | 22       | 18    | 10 | 12  | 36        |    |    |
| Sdg 4 - 0,45 / - 0,90 m                         | 82.14          | 9.1          | 8.22              | 1 300                       | 0.034   | 10       | <1        | 56       | 24    | 27 | 35  | 49        |    |    |
| Sdg 4 - 0,90 / -2,20 m                          | 77.47          | 43.3         | 8.03              | < 100                       | 0.015   | 17       | <1        | 75       | 22    | 42 | 21  | 38        |    |    |
| 3dg 4 0,707 2,20 III                            | 77.47          | 43.3         | 0.00              | 100                         | 0.013   | .,       | , -       | 7.5      |       | TZ | 2.1 | 30        |    |    |
| Sdg 5 - 0,15 / - 0,60m                          | 73.44          | 40.0         | 8.10              | <100                        | 0.373   | 29       | <1        | 59       | 137   | 32 | 338 | 420       |    |    |
|                                                 |                |              |                   |                             |         |          |           |          |       |    |     |           |    |    |
| Sdg 6 0 / - 0,30m                               | 92.99          | 59.9         | 7.86              | <100                        | 0.055   | 68       | <1        | 26       | 22    | 12 | 57  | 50        |    |    |
| Sdg 6 - 0,30 / - 0,70m                          | 74.15          | 46.1         | 7.71              | <100                        | 0.322   | 49       | 1         | 44       | 184   | 38 | 225 | 351       |    |    |
| Sdg 6 - 0,70 / -1,10m                           | 78.83          | 0.8          | 7.98              | <100                        | 0.014   | 12       | <1        | 66       | 22    | 52 | 21  | 57        |    |    |
| Sdg 6 - 1,10 / -1,60m                           | 77.38          | 0.7          | 7.87              | < 100                       | 0.03    | 14       | <1        | 78       | 28    | 38 | 22  | 70        |    |    |
| Sdg 6 - 1,60 / -2,30m                           | 84.03          | 50.1         | 7.78              | <100                        | < 0,010 | 11       | <1        | 54       | 8     | 24 | 14  | 30        |    |    |
|                                                 |                |              |                   |                             |         |          |           |          |       |    |     |           |    |    |
| Sdg 7 0/-0,15m                                  | 92.07          | 64.8         | 8.43              | 300                         | 0.027   | 5        | <1        | 29       | 19    | 13 | 49  | 42        |    |    |
| Sdg 7 - 0,15 /- 1,10m                           | 82.46          | 49.4         | 8.21              | 630                         | 0.051   | 10       | <1        | 68       | 27    | 36 | 42  | 57        |    |    |
| Sdg 7 -1,10 /- 1,30m                            | 82.87          | 61.2         | 8.07              | 1 400                       | 0.055   | 11       | <1        | 97       | 22    | 48 | 25  | 44        |    |    |
| Sdg 7 -1,30 /- 2,30m                            | 86.21          | 62.3         | 8.87              | 410                         | 0.028   | 18       | <1        | 81       | 25    | 38 | 26  | 52        |    |    |
| Sda 8 0/-0.40m                                  | 87.95          | 53.7         | 8.23              | 180                         | < 0,010 | 5        | . 1       | 16       | 9     | 8  | 11  | 29        |    |    |
|                                                 |                |              |                   | 710                         | 0.125   | 5<br>55  | <1        |          | 89    | 29 | 189 | 29<br>171 |    |    |
| Sdg 8 - 0,40 / - 0,50m                          | 80.01          | 54.7<br>18.8 | 8.41<br>8.34      | <100                        | 0.125   | 55<br>12 | <1<br><1  | 43<br>64 | 22    | 34 | 21  | 54        |    |    |
| Sdg 8 - 0,50 / - 1,30m<br>Sda 8 -1,30 / - 2,30m | 83.38<br>87.54 | 18.8<br>58.5 | 8.34<br>8.17      | < 100                       | 0.034   | 16       | < 1<br><1 | 78       | 22    | 40 | 19  | 42        |    |    |
| Suy 6 -1,30 / - 2,30111                         | 87.54          | 58.5         | δ.17              | < 100                       | 0.012   | 10       | < 1       | /8       | 21    | 40 | 19  | 42        |    |    |
|                                                 |                |              |                   |                             |         |          |           |          |       |    |     |           |    |    |

Résultats exprimés par rapport à la matière sèche sans tenir compte des cailloux

| Valeurs issues du programme ASPITET de l'INRA (février 2000) |     |     |      |       |     |      |         |         |  |  |  |
|--------------------------------------------------------------|-----|-----|------|-------|-----|------|---------|---------|--|--|--|
| Sol normal                                                   | 0.1 | 25  | 0.45 | 90    | 20  | 60   | 50      | 100     |  |  |  |
| Anomalie modérée                                             | 2.3 | 65  | 2    | 150   | 62  | 130  | 100     | 250     |  |  |  |
| Forte anomalie                                               |     | 284 | 46.3 | 3 180 | 160 | 2 07 | 6 10 18 | 0 11 42 |  |  |  |

#### HAP GALLICIAN 3-5

| ECHANTILLON             | Sdg 2 0 /-0,30 m | Sdg 2 - 0,30 / - 0,80 m |  |  |  |
|-------------------------|------------------|-------------------------|--|--|--|
|                         |                  |                         |  |  |  |
| COMPOSE                 | μg/              | kg                      |  |  |  |
| Acénaphtène             | < 150            | < 150                   |  |  |  |
| Acénaphthylène          | < 150            | < 150                   |  |  |  |
| Antracène               | < 150            | < 150                   |  |  |  |
| Benzo(a)Pyrène          | < 150            | < 150                   |  |  |  |
| Benzo(b)Fluoranthène    | < 150            | < 150                   |  |  |  |
| Benz(a) antracène       | < 150            | < 150                   |  |  |  |
| Benzo(g,h,i) Perylène   | < 150            | < 150                   |  |  |  |
| Benzo(k) Fluoranthène   | < 150            | < 150                   |  |  |  |
| Chrysène                | < 150            | < 150                   |  |  |  |
| Dibenz(a,h) antracène   | < 150            | < 150                   |  |  |  |
| Fluoranthène            | < 150            | < 150                   |  |  |  |
| Fluorène                | < 150            | < 150                   |  |  |  |
| Indéno(1,2,3-c,d)Pyrène | < 150            | < 150                   |  |  |  |
| Napthalène              | < 150            | < 150                   |  |  |  |
| Phénantrène             | < 150            | < 150                   |  |  |  |
| Pyrène                  | < 150            | < 150                   |  |  |  |

Résultats exprimés par rapport à la terre sèche.sans tenir compte des cailloux

Sites du Languedoc – Rapport sur les investigations et les prélèvements libératoires réalisés sur le site de Gallician 3 et 5 (GAL3 et GAL5)

ANNEXE 2
COUPES TECHNIQUES DES SONDAGES – CAMPAGNES DE NOVEMBRE
2019 ET SEPTEMBRE 2020





CLIENT / SITE: Total - RETIA / GAL3-5

PROJET / REF.: FRTOTMS020 / Novembre 2019

DATE DEBUT: 20/11/2019 14:45:00 DATE FIN: 20/11/2019 15:20:00 COORDONNEES (RGF 93 m): X:803 427 - Y:6 282 878

FOREUR: STRANIC ALTITUDE DU SOL (m NGF): 2,16

TECHNIQUE: Fouille 10-TP NIVEAU DE LA NAPPE: 1.5 m - 0.657 m NGF

| TECHNIQUE: Fouille 10-TP NIVEAU DE LA NAPPE: 1.5 m - 0.657 m NGF |                                                                      |              |                      |                |                                                                                     |                         |                  |                  |                  |
|------------------------------------------------------------------|----------------------------------------------------------------------|--------------|----------------------|----------------|-------------------------------------------------------------------------------------|-------------------------|------------------|------------------|------------------|
| DESS                                                             | INE PAR: VDA                                                         |              | VERIFIE F            | PAR :          | ADE REMARQUES: Arrêt car arrivée d'eau                                              |                         |                  |                  |                  |
| PROFONDEUR<br>(m)                                                | COUPE<br>DE L'OUVRAGE<br>Pt. ref.: TN<br>Z Pt. ref.: 2,16<br>(m NGF) | NIVEAU NAPPE | IMPACI VISUEL<br>LOG | PROFONDEUR (m) | DESCRIPTION                                                                         | FORMATION<br>GEOLOGIQUE | ALTITUDE (m NGF) | ECHANTILLON      | VALEUR PID (ppm) |
|                                                                  |                                                                      |              | <u> </u>             |                | Terre végétale limoneuse marron                                                     |                         |                  |                  |                  |
|                                                                  |                                                                      |              |                      |                | Argiles graveleuses jaunâtres avec tâche de rouille (zone de battement de la nappe) |                         |                  | GAL3-5_S0(0-1.5) | 0,0              |
| 1,5                                                              |                                                                      | Ī            |                      | 1,5            |                                                                                     |                         | 0,7              |                  |                  |
|                                                                  |                                                                      |              |                      |                | Fin du sondage à 1,50 mètres.                                                       |                         |                  |                  |                  |



### Sondage- GAL3-5\_S1 (PAGE 1/1)

155, Rue Louis de Broglie, 13100 Aix-en-Provence - France Tel : +33 (0)4 42 90 74 96

CLIENT / SITE: Total - RETIA / GAL3-5

PROJET / REF.: FRTOTMS020 / Novembre 2019

DATE DEBUT: 21/11/2019 11:20:00 DATE FIN: 21/11/2019 11:45:00 COORDONNEES (RGF 93 m): X:803 508 - Y:6 282 769

FOREUR: STRANIC

ALTITUDE DU SOL (m NGF) : 1,15

TECHNIQUE: Fouille 10-TP NIVEAU DE LA NAPPE: 0.8 m - 0.351 m NGF

DESSINE PAR : VDA VERIFIE PAR : ADE REMARQUES : Arrêt car arrivée d'eau

| DESS              | NE PAR: VDA                                                          |              | ,             | VERIFIE P | AR:            | ADE REMARQUES: Arrêt car arrivée d'eau                                |                         |                  |                  |                     |
|-------------------|----------------------------------------------------------------------|--------------|---------------|-----------|----------------|-----------------------------------------------------------------------|-------------------------|------------------|------------------|---------------------|
| PROFONDEUR<br>(m) | COUPE<br>DE L'OUVRAGE<br>Pt. ref.: TN<br>Z Pt. ref.: 1,15<br>(m NGF) | NIVEAU NAPPE | IMPACT VISUEL |           | PROFONDEUR (m) | DESCRIPTION                                                           | FORMATION<br>GEOLOGIQUE | ALTITUDE (m NGF) | ECHANTILLON      | VALEUR PID<br>(ppm) |
|                   |                                                                      |              |               |           | 0,3            | Terre noire et gravas (béton, feraille)  Argiles plastiques grisâtres |                         | 0,9              | GAL3-5_S1(0-0.3) |                     |
| 0,5               |                                                                      | Ī            |               |           |                |                                                                       |                         |                  | GAL3-5_S1(0.3-1) | 0,0                 |
| - 1,0<br>         |                                                                      |              |               |           | 1,2            | Fin du sondage à 1,20 mètres.                                         |                         | 0,2              |                  |                     |
|                   |                                                                      |              |               |           |                |                                                                       |                         |                  |                  |                     |
|                   |                                                                      |              |               |           |                |                                                                       |                         |                  |                  |                     |
|                   |                                                                      |              |               |           |                |                                                                       |                         |                  |                  |                     |
|                   |                                                                      |              |               |           |                |                                                                       |                         |                  |                  |                     |
|                   |                                                                      |              |               |           |                |                                                                       |                         |                  |                  |                     |



# Sondage- GAL3-5 S2

155, Rue Louis de Broglie, 13100 Aix-en-Provence - France Tel : +33 (0)4 42 90 74 96

CLIENT / SITE: Total - RETIA / GAL3-5

PROJET / REF.: FRTOTMS020 / Novembre 2019

DATE DEBUT: 21/11/2019 09:55:00 DATE FIN: 21/11/2019 10:25:00 COORDONNEES (RGF 93 m): X:803 495 - Y:6 282 787

FOREUR: STRANIC

ALTITUDE DU SOL (m NGF) : 1,23

|                   | NIQUE: Fouille 10-TP                                                 |              |                      |                | NIVEAU DE LA NAPPE : 1 m                                                                |                         | 1 m NGI          | F                |                     |
|-------------------|----------------------------------------------------------------------|--------------|----------------------|----------------|-----------------------------------------------------------------------------------------|-------------------------|------------------|------------------|---------------------|
| DESS              | INE PAR: VDA                                                         |              | VERIFIE F            | PAR :          | ADE REMARQUES: Arrêt car arrivée d'eau                                                  |                         |                  |                  |                     |
| PROFONDEUR<br>(m) | COUPE<br>DE L'OUVRAGE<br>Pt. ref.: TN<br>Z Pt. ref.: 1,23<br>(m NGF) | NIVEAU NAPPE | IMPACT VISUEL<br>LOG | PROFONDEUR (m) | DESCRIPTION                                                                             | FORMATION<br>GEOLOGIQUE | ALTITUDE (m NGF) | ECHANTILLON      | VALEUR PID<br>(ppm) |
|                   |                                                                      | Ţ            |                      |                | Argiles grises à noires (boue de forage?) - Odeur d'hydrocarbures Inclusion noire à 1 m |                         | 0,6              | GAL3-5_S2(0-0.6) | 0,0                 |
|                   |                                                                      |              |                      |                | Fin du sondage à 1,30 mètres.                                                           |                         |                  |                  |                     |





CLIENT / SITE: Total - RETIA / GAL3-5

PROJET / REF.: FRTOTMS020 / Novembre 2019

DATE DEBUT: 21/11/2019 10:30:00 DATE FIN: 21/11/2019 11:10:00 COORDONNEES (RGF 93 m): X:803 491 - Y:6 282 793

FOREUR: STRANIC

ALTITUDE DU SOL (m NGF) : 1,37

TECHNIQUE: Fouille 10-TP NIVEAU DE LA NAPPE: 0.9 m - 0.471 m NGF

DESSINE PAR : VDA VERIFIE PAR : ADE REMARQUES : Arrêt car arrivée d'eau

| DESS              | INE PAR: VDA                                                         |              | VERIFIE P     | AR:            | ADE REMARQUES: Arrêt car arrivée d'eau                                                       |                         |                  |                      |                  |
|-------------------|----------------------------------------------------------------------|--------------|---------------|----------------|----------------------------------------------------------------------------------------------|-------------------------|------------------|----------------------|------------------|
| PROFONDEUR<br>(m) | COUPE<br>DE L'OUVRAGE<br>Pt. ref.: TN<br>Z Pt. ref.: 1,37<br>(m NGF) | NIVEAU NAPPE | IMPACI VISUEL | PROFONDEUR (m) | DESCRIPTION                                                                                  | FORMATION<br>GEOLOGIQUE | ALTITUDE (m NGF) | ECHANTILLON          | VALEUR PID (ppm) |
|                   |                                                                      | Ţ            |               | 1,1            | Argiles grises à noires (boue de forage?) - Oodeur d'hydrocarbures  Grave argileuse jaunâtre |                         | 0,3              | GAL3-5_S2bis(1.1-1.3 |                  |
| 1,5               |                                                                      |              |               | 1,5            | Fin du sondage à 1,50 mètres.                                                                |                         |                  |                      |                  |



### Sondage- GAL3-5\_S3 (PAGE 1/1)

155, Rue Louis de Broglie, 13100 Aix-en-Provence - France Tel : +33 (0)4 42 90 74 96

CLIENT / SITE: Total - RETIA / GAL3-5

PROJET / REF.: FRTOTMS020 / Novembre 2019

DATE DEBUT: 21/11/2019 09:20:00 DATE FIN: 21/11/2019 09:45:00 COORDONNEES (RGF 93 m): X:803 500 - Y:6 282 813

FOREUR: STRANIC

ALTITUDE DU SOL (m NGF) : 1,52

| ТЕСН              | CHNIQUE: Fouille 10-TP  NIVEAU DE LA NAPPE: 0.7 m - 0.821 m NGF  SSINE PAR: VDA  VERIFIE PAR: ADE  REMARQUES: Arrêt car arrivée d'eau |              |  |                |                               |                         |                  |                |                  |  |  |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------|--|----------------|-------------------------------|-------------------------|------------------|----------------|------------------|--|--|
| PROFONDEUR<br>(m) | COUPE<br>DE L'OUVRAGE<br>Pt. ref.: TN<br>Z Pt. ref.: 1,52<br>(m NGF)                                                                  | NIVEAU NAPPE |  | PROFONDEUR (m) | DESCRIPTION                   | FORMATION<br>GEOLOGIQUE | ALTITUDE (m NGF) | ECHANTILLON    | VALEUR PID (ppm) |  |  |
|                   |                                                                                                                                       | Ţ            |  |                | Argiles graveleuses marron    |                         | 0,5              | GAL3-5_S3(0-1) | 0,0              |  |  |
|                   |                                                                                                                                       |              |  |                | Fin du sondage à 1,00 mètres. |                         |                  |                |                  |  |  |



# Sondage- GAL3-5 S4

155, Rue Louis de Broglie, 13100 Aix-en-Provence - France Tel : +33 (0)4 42 90 74 96

CLIENT / SITE: Total - RETIA / GAL3-5

PROJET / REF.: FRTOTMS020 / Novembre 2019

DATE DEBUT: 21/11/2019 08:25:00 DATE FIN: 21/11/2019 09:15:00 COORDONNEES (RGF 93 m): X:803 459 - Y:6 282 837

FOREUR: STRANIC ALTITUDE DU SOL (m NGF) : 1,44

TECHNIQUE: Fouille 10-TP NIVEAU DE LA NAPPE: 3 m - -1.561 m NGF

| DESS              | NE PAR: VDA                                                          |              | VERIFIE P | PAR:           | ADE REMARQUES: Arrêt car arrivée d'eau                           |                         |                  |                |                     |
|-------------------|----------------------------------------------------------------------|--------------|-----------|----------------|------------------------------------------------------------------|-------------------------|------------------|----------------|---------------------|
| PROFONDEUR<br>(m) | COUPE<br>DE L'OUVRAGE<br>Pt. ref.: TN<br>Z Pt. ref.: 1,44<br>(m NGF) | NIVEAU NAPPE | LOG       | PROFONDEUR (m) | DESCRIPTION                                                      | FORMATION<br>GEOLOGIQUE | ALTITUDE (m NGF) | ECHANTILLON    | VALEUR PID<br>(ppm) |
| -                 |                                                                      |              | <u> </u>  |                | Terre végétale argileuse marron                                  |                         | <                |                | $\Box$              |
| 0,5               |                                                                      |              |           | 0,3            | Grave argileuse grise (galet (80 %))                             |                         |                  |                |                     |
|                   |                                                                      |              |           | 0,7            | Grave argileuse jaunâtre avec passe d'argile blanche<br>vers 3 m |                         |                  |                |                     |
| 1,0               |                                                                      |              |           |                |                                                                  |                         |                  |                |                     |
|                   |                                                                      |              |           |                |                                                                  |                         |                  | GAL3-5_S4(0-3) | 0,0                 |
|                   |                                                                      |              |           |                |                                                                  |                         |                  |                |                     |
| 2,0               |                                                                      |              |           | _              |                                                                  |                         |                  |                |                     |
| <br>- 2,5<br>     |                                                                      |              |           |                |                                                                  |                         |                  |                |                     |
| <br><br>3,0       |                                                                      | Ţ            |           | 3,0            |                                                                  |                         | -1,6             |                |                     |
|                   |                                                                      |              |           |                | Fin du sondage à 3,00 mètres.                                    |                         |                  |                |                     |



# Sondage- GAL3-5\_S5

155, Rue Louis de Broglie, 13100 Aix-en-Provence - France Tel : +33 (0)4 42 90 74 96

CLIENT / SITE: Total - RETIA / GAL3-5

PROJET / REF.: FRTOTMS020 / Novembre 2019

DATE DEBUT: 20/11/2019 16:10:00 DATE FIN: 20/11/2019 16:35:00 COORDONNEES (RGF 93 m): X:803 480 - Y:6 282 851

FOREUR: STRANIC ALTITUDE DU SOL (m NGF): 1,76

TECHNIQUE: Fouille 10-TP NIVEAU DE LA NAPPE: 0.9 m - 0.859 m NGF

| DESSI             | NE PAR: VDA                                                          |              |               | VERIFIE P                                    | AR:            | ADE REMARQUES: Arrêt car arrivée d'eau                          |                         |                  |                    |                  |
|-------------------|----------------------------------------------------------------------|--------------|---------------|----------------------------------------------|----------------|-----------------------------------------------------------------|-------------------------|------------------|--------------------|------------------|
| PROFONDEUR<br>(m) | COUPE<br>DE L'OUVRAGE<br>Pt. ref.: TN<br>Z Pt. ref.: 1,76<br>(m NGF) | NIVEAU NAPPE | IMPACT VISUEL | 907                                          | PROFONDEUR (m) | DESCRIPTION                                                     | FORMATION<br>GEOLOGIQUE | ALTITUDE (m NGF) | ECHANTILLON        | VALEUR PID (ppm) |
| <br>              |                                                                      |              |               |                                              | 0,1            | Terre végétale argileuse marron<br>Argiles plastiques grisâtres |                         | 1,4              | GAL3-5_S5(0-0.4)   |                  |
|                   |                                                                      |              |               | 77 77 77<br>77 77 77<br>77 77 77<br>77 77 77 |                | Terre végétale argileuse marron                                 |                         | ,                | GAL3-5_S5(0.4-0.9) | 0,0              |
| - 1,0<br>         |                                                                      | Ţ            | -             |                                              | 0,9            | Grave argileuse jaunâtre                                        |                         | 0,9              |                    |                  |
|                   |                                                                      |              |               | ° — 。                                        | 1,4            |                                                                 |                         |                  |                    |                  |
|                   |                                                                      |              |               |                                              |                | Fin du sondage à 1,40 mètres.                                   |                         |                  |                    |                  |





CLIENT / SITE: Total - RETIA / GAL3-5

PROJET / REF.: FRTOTMS020 / Novembre 2019

DATE DEBUT: 20/11/2019 15:35:00 DATE FIN: 20/11/2019 16:00:00 COORDONNEES (RGF 93 m): X:803 463 - Y:6 282 892

FOREUR: STRANIC ALTITUDE DU SOL (m NGF): 2,00

TECHNIQUE: Fouille 10-TP NIVEAU DE LA NAPPE: 1.2 m - 0.797 m NGF

DESSINE PAR: VDA VERIFIE PAR: ADE REMARQUES: Arrêt car arrivée d'eau

| DESS              | INE PAR: VDA                                                         |              | '             | VERIFIE P                             | AR:            | ADE REMARQUES: Arrêt car arrivée d'eau     |                         |                  |                  |                  |
|-------------------|----------------------------------------------------------------------|--------------|---------------|---------------------------------------|----------------|--------------------------------------------|-------------------------|------------------|------------------|------------------|
| PROFONDEUR<br>(m) | COUPE<br>DE L'OUVRAGE<br>Pt. ref.: TN<br>Z Pt. ref.: 2,00<br>(m NGF) | NIVEAU NAPPE | IMPACT VISUEL | 907                                   | PROFONDEUR (m) | DESCRIPTION                                | FORMATION<br>GEOLOGIQUE | ALTITUDE (m NGF) | ECHANTILLON      | VALEUR PID (ppm) |
|                   |                                                                      | Ā            |               | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 1,2            | Grave argileuse grisâtre (galet (50-70 %)) |                         | 0,5              | GAL3-5_S6(0-1.5) | 0,0              |
|                   |                                                                      |              |               |                                       |                | Fin du sondage à 2,00 mètres.              |                         |                  |                  |                  |





TECHNIQUE: Fouille 10-TP

155, Rue Louis de Broglie, 13100 Aix-en-Provence - France Tel : +33 (0)4 42 90 74 96

CLIENT / SITE: Total - RETIA / GAL3-5

ALTITUDE DU SOL (m NGF) : 0,87

PROJET / REF.: FRTOTMS020 / Novembre 2019

DATE DEBUT: 21/11/2019 13:45:00 DATE FIN: 21/11/2019 14:45:00 COORDONNEES (RGF 93 m): X:803 555 - Y:6 282 799

FOREUR: STRANIC

NIVEAU DE LA NAPPE: 1.3 m - -0.429 m NGF

DESSINE PAR: VDA VERIFIE PAR: ADE REMARQUES: Arrêt car arrivée d'eau

|                                                           | VERIFIE PAR :                                     | ADE REMARQUES: Arrêt car arrivée d'eau                        |                         |                  |                  |                     |
|-----------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------|-------------------------|------------------|------------------|---------------------|
| COUPE DE L'OUVRAGE  Pt. ref.: TN Z Pt. ref.: 0,87 (m NGF) | NIVEAU NAPPE IMPACT VISUEL LOG PROFONDEUR (m)     | DESCRIPTION                                                   | FORMATION<br>GEOLOGIQUE | ALTITUDE (m NGF) | ECHANTILLON      | VALEUR PID<br>(ppm) |
| 0,5<br>                                                   | □ 0,1 □ 0,1 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ | Argiles grises collantes et compactes                         |                         | -0,6             | GAL3-5_S8(0-0.7) | 0,0                 |
| 1,5                                                       | I — 0 I                                           | Grave argileuse marron (galet)  Fin du sondage à 1,70 mètres. |                         | -0,6             |                  |                     |





CLIENT / SITE: Total - RETIA / GAL3-5

PROJET / REF.: Investigations complémentaires / FRTOTMS020-P2

DATE DEBUT: 18/09/2020 09:35:00 DATE FIN: 18/09/2020 10:15:00 COORDONNEES (RGF 93 m): X:803 506 - Y:6 282 772

FOREUR: EJM HYDROVAC

ALTITUDE DU SOL (m NGF) : 1,24

TECHNIQUE: Fouille 10-TP NIVEAU DE LA NAPPE: 1.6 m - -0.36 m NGF

| DESSI             | NE PAR: VDA                                                |              |               | VERIFIE PAR: ADE REMARQUES: |                |                                                                                             |                         |                  |         |            |                     |
|-------------------|------------------------------------------------------------|--------------|---------------|-----------------------------|----------------|---------------------------------------------------------------------------------------------|-------------------------|------------------|---------|------------|---------------------|
| PROFONDEUR<br>(m) | COUPE DE L'OUVRAGE  Pt. ref.: Sol Z Pt. ref.: 1,24 (m NGF) | NIVEAU NAPPE | IMPACT VISUEL | 907                         | PROFONDEUR (m) | DESCRIPTION                                                                                 | FORMATION<br>GEOLOGIQUE | ALTITUDE (m NGF) |         |            | VALEUR PID<br>(ppm) |
| <br>              |                                                            |              |               |                             | 0,3            | Remblais (brique, gravier, tesson de verre) marron-noir  Argiles limoneuses marron          |                         |                  |         |            |                     |
|                   |                                                            |              |               |                             | 0,8            | Limons argileux gris-vert                                                                   |                         |                  | GAL3-5_ | S10(0-1.2) | 0,0                 |
| <br>              |                                                            |              |               |                             | 1,2<br>1,4     | Sables graveleux blanc-jaune - Présence d'eau                                               |                         | 0,0              |         |            |                     |
|                   |                                                            | Ā            |               | . 0 -                       | 1,6            | Argiles plastiques gris sombre  Grave argileuse grise à beige - Présence d'eau (irisations) |                         |                  |         |            | 0,0                 |
|                   |                                                            |              |               | ° ;                         | 1,9            | Fin du sondage à 1,90 mètres.                                                               |                         |                  |         |            |                     |
|                   |                                                            |              |               |                             |                |                                                                                             |                         |                  |         |            |                     |
|                   |                                                            |              |               |                             |                |                                                                                             |                         |                  |         |            |                     |





CLIENT / SITE: Total - RETIA / GAL3-5

PROJET / REF.: Investigations complémentaires / FRTOTMS020-P2

DATE DEBUT: 18/09/2020 08:55:00 DATE FIN: 18/09/2020 09:30:00 COORDONNEES (RGF 93 m): X:803 512 - Y:6 282 770

FOREUR: EJM HYDROVAC ALTITUDE DU SOL (m NGF): 1,20

TECHNIQUE: Fouille 10-TP NIVEAU DE LA NAPPE: 1.5 m - -0.3 m NGF

| DESS              | SSINE PAR : VDA VERIFI                                                |              |               |     |                                        | ADE REMARQUES:                                                                                                                                                                        |                         |                  |                     |                     |
|-------------------|-----------------------------------------------------------------------|--------------|---------------|-----|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------|---------------------|---------------------|
| PROFONDEUR<br>(m) | COUPE<br>DE L'OUVRAGE<br>Pt. ref.: Sol<br>Z Pt. ref.: 1,20<br>(m NGF) | NIVEAU NAPPE | IMPACT VISUEL | 907 | PROFONDEUR (m)                         | DESCRIPTION                                                                                                                                                                           | FORMATION<br>GEOLOGIQUE | ALTITUDE (m NGF) | ECHANTILLON         | VALEUR PID<br>(ppm) |
|                   |                                                                       | ∇            |               |     | 0,1<br>0,3<br>0,8<br>1,0<br>1,5<br>1,6 | Argiles plastiques grises  Argiles limoneuses grises  Sables coquillés gris Argiles plastiques grises  Grave argileuse grise - Présence d'eau (irisations)  Argiles limoneuses beiges |                         | -0,3             | GAL3-5_S11(1.3-1.5) | 0,0                 |
|                   |                                                                       |              |               |     |                                        | Fin du sondage à 1,80 mètres.                                                                                                                                                         |                         |                  |                     |                     |





CLIENT / SITE: Total - RETIA / GAL3-5

PROJET / REF.: Investigations complémentaires / FRTOTMS020-P2

DATE DEBUT: 18/09/2020 08:20:00 DATE FIN: 18/09/2020 08:50:00 COORDONNEES (RGF 93 m): X:803 510 - Y:6 282 765

FOREUR: EJM HYDROVAC

ALTITUDE DU SOL (m NGF) : 1,24

**TECHNIQUE**: Fouille 10-TP **NIVEAU DE LA NAPPE**: 1.3 m - -6.00000000000001E-02 m NGF

| DESSI              | NE PAR: VDA                                                           |              | VERIFIE PAR: ADE REMARQUES: |                |                                                                                                   |                         |                  |                   |                  |
|--------------------|-----------------------------------------------------------------------|--------------|-----------------------------|----------------|---------------------------------------------------------------------------------------------------|-------------------------|------------------|-------------------|------------------|
| PROFONDEUR<br>(m)  | COUPE<br>DE L'OUVRAGE<br>Pt. ref.: Sol<br>Z Pt. ref.: 1,24<br>(m NGF) | NIVEAU NAPPE | IMPACT VISUEL<br>LOG        | PROFONDEUR (m) | DESCRIPTION                                                                                       | FORMATION<br>GEOLOGIQUE | ALTITUDE (m NGF) | ECHANTILLON       | VALEUR PID (ppm) |
|                    |                                                                       |              |                             | 0,4            | Remblais (gravier, tesson de verre) dans matrice limoneuse marron-noir  Argiles limoneuses beiges |                         |                  | GAL3-5_S12(0.4-1) | 0,0              |
| 1,0                |                                                                       |              |                             | 1,0            | Argiles limoneuses grises                                                                         |                         | 0,2              | GAL3-5_S12(1-1.3) |                  |
| <br><u>1,5</u><br> |                                                                       |              |                             | 1,3            | Grave argileuse grise - Présence d'eau (faibles irisations) Limons argileux beiges                |                         | -0,1             | V V               |                  |
|                    |                                                                       |              |                             | 1,8            |                                                                                                   |                         |                  |                   |                  |
|                    |                                                                       |              |                             |                | Fin du sondage à 1,80 mètres.                                                                     |                         |                  |                   |                  |





FOREUR: EJM HYDROVAC

155, Rue Louis de Broglie, 13100 Aix-en-Provence - France Tel : +33 (0)4 42 90 74 96

CLIENT / SITE: Total - RETIA / GAL3-5

PROJET / REF.: Investigations complémentaires / FRTOTMS020-P2

DATE DEBUT: 18/09/2020 10:20:00 DATE FIN: 18/09/2020 11:05:00 COORDONNEES (RGF 93 m): X:803 504 - Y:6 282 766

ALTITUDE DU SOL (m NGF) : 1,29

TECHNIQUE: Fouille 10-TP NIVEAU DE LA NAPPE: 1.3 m - -0.01 m NGF

| ESSINE PAR : VDA VERIFIE PA                                |              |                                                            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ADE REMARQUES:                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                |                                                                                                                                                                     |
|------------------------------------------------------------|--------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| COUPE DE L'OUVRAGE  Pt. ref.: Sol Z Pt. ref.: 1,29 (m NGF) | NIVEAU NAPPE | IMPACT VISUEL                                              | 907                                                                                                            | PROFONDEUR (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DESCRIPTION                                                                                                                                                                                                  | FORMATION<br>GEOLOGIQUE                                                                                                                                                                                                                                                                                   | LTITUDE (m NGF)                                                                                                                                                                                                            | ECHANTILLON                                                                                                                                                                                                                                                    | VALEUR PID<br>(ppm)                                                                                                                                                 |
|                                                            |              |                                                            | 71/ 71/ 7                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Terre végétale limoneuse marron                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                           | _ ⋖                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                |                                                                                                                                                                     |
|                                                            |              |                                                            |                                                                                                                | 0,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Remblais noirs (galet, gravier, tesson de verre, brique)                                                                                                                                                     |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                | -                                                                                                                                                                   |
|                                                            |              |                                                            |                                                                                                                | 0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                           | 0,8                                                                                                                                                                                                                        | GAL3-5_S13(0.1-0.5)                                                                                                                                                                                                                                            |                                                                                                                                                                     |
|                                                            |              |                                                            |                                                                                                                | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Argiles limoneuses marron                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                | 0,0                                                                                                                                                                 |
|                                                            |              |                                                            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                |                                                                                                                                                                     |
|                                                            |              |                                                            |                                                                                                                | 1,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Limons argileux gris-vert                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                           | 0,3                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                | -                                                                                                                                                                   |
|                                                            | Ţ            |                                                            |                                                                                                                | 1,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sables fins gris - Présence d'eau                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                |                                                                                                                                                                     |
|                                                            |              |                                                            | . 0 —                                                                                                          | 1,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Grave argileuse marron (galet)                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                |                                                                                                                                                                     |
|                                                            |              |                                                            |                                                                                                                | 1,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                |                                                                                                                                                                     |
|                                                            |              |                                                            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fin du sondage à 1,80 mètres.                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                |                                                                                                                                                                     |
|                                                            |              |                                                            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                |                                                                                                                                                                     |
|                                                            | COUPE        | COUPE DE L'OUVRAGE  Pt. ref.: Sol Z Pt. ref.: 1,29 (m NGF) | COUPE<br>DE L'OUVRAGE  Pt. ref.: Sol<br>Z Pt. ref.: 1,29<br>(m NGF)  PD NG | COUPE DE L'OUVRAGE  Pt. ref.: Sol Z Pt. ref.: 1,29 (m NGF)  Tansaction of the state | COUPE DE L'OUVRAGE  Pt. ref.: Sol Z Pt. ref.: 1,29 (m NGF)  NINEAU NAPPE  LOG  DE COUPE DE L'OUVRAGE  AND ACT VISUE DE L'OUVRAGE  DE COUPE DE L'OUVRAGE  AND ACT VISUE DE L'OUVRAGE  1,0  1,0  1,0  1,1  1,3 | COUPE DE L'OUVRAGE Pt. ref.: 1,29 (m NGF)  Pt. ref.: 1,29 (m NGF)  DESCRIPTION  Terre végétale limoneuse marron Remblais noirs (galet, gravier, tesson de verre, brique)  Argiles limoneuses marron  Limons argileux gris-vert  1,3 Sables fins gris - Présence d'eau  1,5 Grave argileuse marron (galet) | COUPE DE L'OUVRAGE  Pt. ref.: Sol Z Pt. ref.: 1.29 (m NGF)  1.0 0.1 Remblais noirs (galet, gravier, tesson de verre, brique)  Argiles limoneuses marron  1.0 Limons argileux gris-vert  1.1 Grave argileuse marron (galet) | COUPE DE L'OUVRAGE  Pt. ref.: Sol 2 Pt. ref.: 1.29 (m NGF)  2 Pt. ref.: 1.29 (m NGF)  3 Argilles limoneuses marron  1.0 Limons argileux gris-vert  1.1 Grave argileuse marron (galet)  3 Sables fins gris - Présence d'eau  1.8 Grave argileuse marron (galet) | COUPE DE L'OUVRAGE Pt. ref. Sol Z Pt. ref. 129 (m NOF)  1.0  Argiles limoneuses marron  1.0  Limons argileux gris-vert  1.3  Sables fins gris - Présance d'eau  1.8 |





FOREUR: EJM HYDROVAC

155, Rue Louis de Broglie, 13100 Aix-en-Provence - France Tel : +33 (0)4 42 90 74 96

CLIENT / SITE: Total - RETIA / GAL3-5

PROJET / REF.: Investigations complémentaires / FRTOTMS020-P2

DATE DEBUT: 16/09/2020 14:00:00 DATE FIN: 16/09/2020 14:45:00 COORDONNEES (RGF 93 m): X:803 524 - Y:6 282 726

ALTITUDE DU SOL (m NGF) : 0,58

TECHNIQUE: Fouille 10-TP NIVEAU DE LA NAPPE: 1 m - -0.42 m NGF

| DESSI              | NE PAR: VDA                                                           |              |               | VERIFIE P                               | AR:            | ADE REMARQUES:                                                                         |                         |                  |                   |                     |
|--------------------|-----------------------------------------------------------------------|--------------|---------------|-----------------------------------------|----------------|----------------------------------------------------------------------------------------|-------------------------|------------------|-------------------|---------------------|
| PROFONDEUR<br>(m)  | COUPE<br>DE L'OUVRAGE<br>Pt. ref.: Sol<br>Z Pt. ref.: 0,58<br>(m NGF) | NIVEAU NAPPE | IMPACT VISUEL | 907                                     | PROFONDEUR (m) | DESCRIPTION                                                                            | FORMATION<br>GEOLOGIQUE | ALTITUDE (m NGF) | ECHANTILLON       | VALEUR PID<br>(ppm) |
|                    |                                                                       |              |               |                                         | 0,3            | Terre végétale limoneuse marron  Arailes plastiques grises avec passes poires (boue de |                         | 0,3              | GAL3-5_S14(0-0.3) | 0,0                 |
| 0,5                |                                                                       |              |               |                                         |                | Argiles plastiques grises avec passes noires (boue de forage?) - Odeur d'hydrocarbures |                         |                  |                   |                     |
|                    |                                                                       |              |               |                                         |                |                                                                                        |                         |                  | GAL3-5_S14(0.3-1) | 42,7                |
|                    |                                                                       | Ţ            |               |                                         | 1,0            | Grave argileuse grise avec passes marron - Présence d'eau (irisations)                 |                         | -0,4             |                   |                     |
| <br><br><u>1,5</u> |                                                                       |              |               | ° — ° — ° — ° — ° — ° — ° — ° — ° — ° — | 1,5            | Fin du sondage à 1,50 mètres.                                                          |                         |                  |                   |                     |
|                    |                                                                       |              |               |                                         |                |                                                                                        |                         |                  |                   |                     |
|                    |                                                                       |              |               |                                         |                |                                                                                        |                         |                  |                   |                     |
|                    |                                                                       |              |               |                                         |                |                                                                                        |                         |                  |                   |                     |





CLIENT / SITE: Total - RETIA / GAL3-5

PROJET / REF.: Investigations complémentaires / FRTOTMS020-P2

DATE DEBUT: 17/09/2020 15:15:00 DATE FIN: 17/09/2020 15:55:00 COORDONNEES (RGF 93 m): X:803 566 - Y:6 282 751

FOREUR: EJM HYDROVAC

ALTITUDE DU SOL (m NGF) : 0,82

TECHNIQUE: Fouille 10-TP NIVEAU DE LA NAPPE: 2.3 m - -1.48 m NGF

| DESS              | NE PAR: VDA                                                           |                | ,             | VERIFIE PAR: ADE REMARQUES: |                |                                                                   |                         |                  |                     |                  |
|-------------------|-----------------------------------------------------------------------|----------------|---------------|-----------------------------|----------------|-------------------------------------------------------------------|-------------------------|------------------|---------------------|------------------|
| PROFONDEUR<br>(m) | COUPE<br>DE L'OUVRAGE<br>Pt. ref.: Sol<br>Z Pt. ref.: 0,82<br>(m NGF) | NIVEAU NAPPE   | IMPACT VISUEL | 907                         | PROFONDEUR (m) | DESCRIPTION                                                       | FORMATION<br>GEOLOGIQUE | ALTITUDE (m NGF) | ECHANTILLON         | VALEUR PID (ppm) |
|                   |                                                                       |                |               | 71/ 71/ 7                   |                | Terre végétale limoneuse marron                                   |                         |                  |                     |                  |
|                   |                                                                       |                |               |                             | 0,4            | Grave limoneuse marron (galet 70 %) - Présence de tesson de verre |                         |                  |                     |                  |
| 1,0               |                                                                       |                |               |                             | 1,1            | Argiles plastiques grises                                         |                         | -0,3             | GAL3-5_S15(0.8-1.1) |                  |
|                   |                                                                       |                |               |                             | 1,3            | Sables argileux gris - Présence d'eau                             |                         |                  |                     | 0,0              |
| 1,5               |                                                                       |                |               |                             | 16             |                                                                   |                         |                  |                     |                  |
| <br>              |                                                                       |                |               |                             | 1,6            | Argiles plastiques grises avec passes orangées et quelques galets |                         |                  |                     |                  |
| 2,0               |                                                                       |                |               |                             |                |                                                                   |                         |                  | GAL3-5_S15(1.6-2.2) |                  |
| <br>              |                                                                       | <br>  <u>\</u> |               | .0-                         | 2,2            | Grave argileuse beige à grise - Présence d'eau                    |                         | -1,4             | GAL3-5_S15(2.2-2.4) |                  |
|                   |                                                                       |                |               |                             | 2,4            |                                                                   |                         | -1,6             | <u>/ \</u>          |                  |
| 1                 |                                                                       |                |               |                             |                | Fin du sondage à 2,40 mètres.                                     |                         |                  |                     |                  |
|                   |                                                                       |                |               |                             |                |                                                                   |                         |                  |                     |                  |



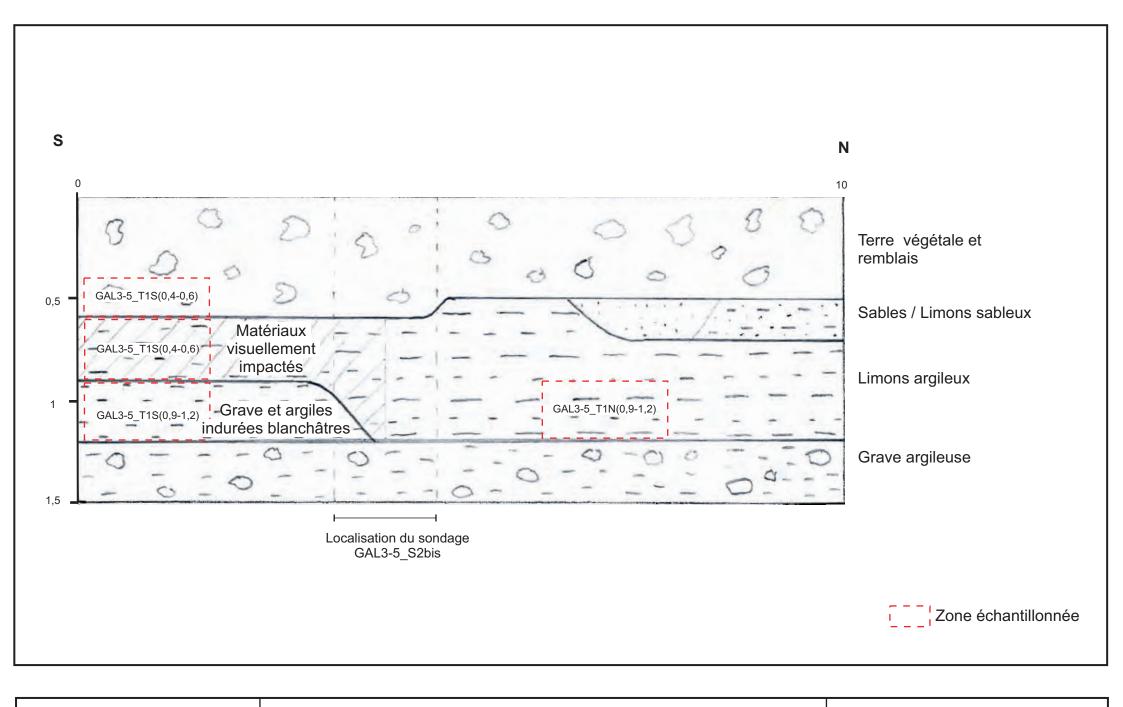
## Tranchée- GAL3-5\_T1

155, Rue Louis de Broglie, 13100 Aix-en-Provence - France Tel : +33 (0)4 42 90 74 96

CLIENT / SITE: Total - RETIA / GAL3-5

PROJET / REF.: Investigations complémentaires / FRTOTMS020-P2

DATE DEBUT: 21/09/2020 09:05:00 DATE FIN: 21/09/2020 10:45:00 COORDONNEES (RGF 93 m): X:803 489 - Y:6 282 796


FOREUR: EJM HYDROVAC

ALTITUDE DU SOL (m NGF): 1,43

TECHNIQUE: Fouille 10-TP NIVEAU DE LA NAPPE: 1 m - 0.43 m NGF

DESSINE PAR: VDA VERIFIE PAR: ADE REMARQUES: Réalisation tranchée du sud vers le nord

| DESS           | INE PAR: VDA                                                          |              | ,             | VERIFIE P | AR:            | ADE REMARQUES: Réalisation tranchée du                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sud vers le nor         | d                |                                                                                     |                  |
|----------------|-----------------------------------------------------------------------|--------------|---------------|-----------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------|-------------------------------------------------------------------------------------|------------------|
| PROFONDEUR (m) | COUPE<br>DE L'OUVRAGE<br>Pt. ref.: Sol<br>Z Pt. ref.: 1,43<br>(m NGF) | NIVEAU NAPPE | IMPACT VISUEL | 907       | PROFONDEUR (m) | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FORMATION<br>GEOLOGIQUE | ALTITUDE (m NGF) | ECHANTILLON                                                                         | VALEUR PID (ppm) |
|                | (m NGF)                                                               | <b>Z</b>     |               |           |                | Limons argileux gris avec passes noires (boue de forage?) présentent de 0 m à 6 m (S>N) - Odeur d'hydrocarbures. Les limons sont de moins en moins argileux en direction du nord.  De 10 m à 15 m (S>N) : sables jaune-gris qui se transforment en limons sableux gris au dessus des limons argileux (épaisseur 0,2 m).  De 0 m à 5 m (S>N) : Grave et argiles indurées blanchâtres, aspect plâtreux (boue de forage chaulée?) - Odeur non identifiée  Grave argileuse beige - Présence d'eau (irisations) |                         | 0,8<br>0,5       | GAL3-5_T1S(0.4-0.6)  GAL3-5_T1S(0.6-0.9)  GAL3-5_T1S(0.9-1.2) + GAL3-5_T1N(0.9-1.2) | 0,0              |
|                |                                                                       |              |               |           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                  |                                                                                     |                  |



RAMBOLL

Client: RETIA

Projet N°: FRTOTMS020-P2

#### Investigations complémentaires

GAL3-5 Vauvert (30), FRANCE

| Cour | e l      | litholo | aiaue | de I | a tran | chée  | GAL3-5 | Т1 |
|------|----------|---------|-------|------|--------|-------|--------|----|
| Coup | <b>,</b> |         | gique | ueı  | a cian | ciiee | GALS-S |    |

Dessiné par : VDA Vérifié par : ADE

Version : 01 Date : -

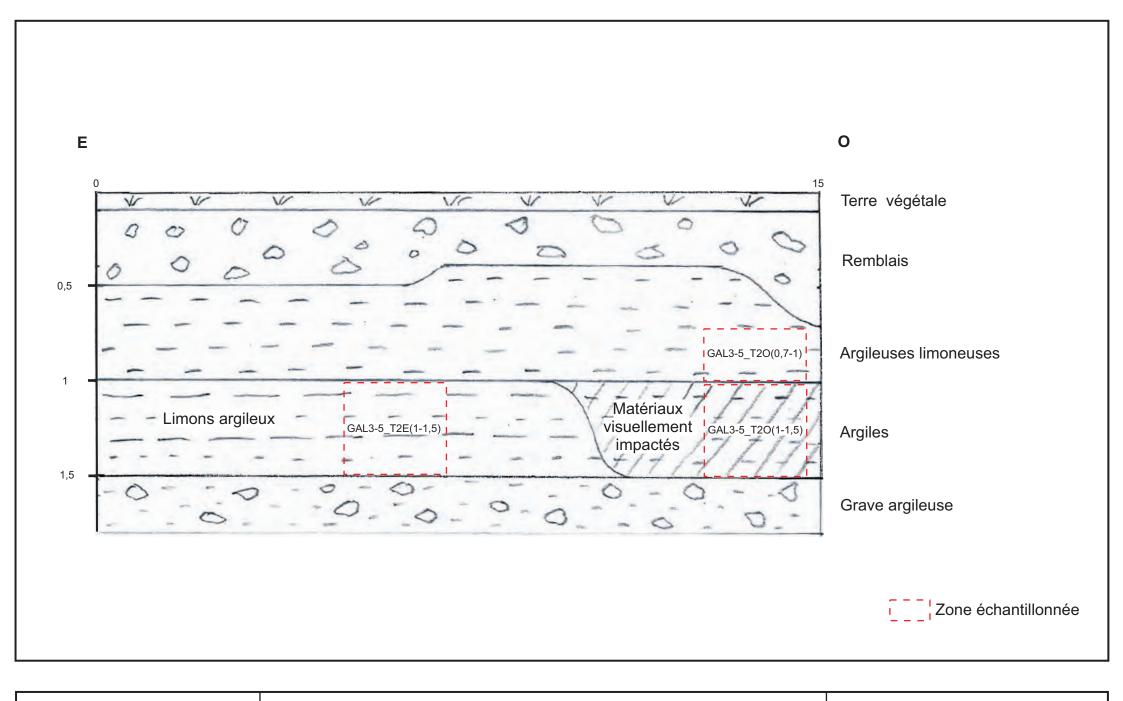




CLIENT / SITE: Total - RETIA / GAL3-5

PROJET / REF.: Investigations complémentaires / FRTOTMS020-P2

DATE DEBUT: 18/09/2020 11:25:00 DATE FIN: 18/09/2020 13:45:00 COORDONNEES (RGF 93 m): X:803 503 - Y:6 282 794


FOREUR: EJM HYDROVAC

ALTITUDE DU SOL (m NGF) : 1,35

TECHNIQUE: Fouille 10-TP NIVEAU DE LA NAPPE: 1.5 m - -0.15 m NGF

DESSINE PAR : VDA VERIFIE PAR : ADE REMARQUES : Réalisation tranchée de l'est vers l'ouest

| DESSINE PAR: VDA VERIFIE PAR: ADE REMARQUES: Réalisation tranchée de l'est vers l'ouest |                                                                       |              |               |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |                  |                                          |                     |
|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------|---------------|-----|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------|------------------------------------------|---------------------|
| PROFONDEUR<br>(m)                                                                       | COUPE<br>DE L'OUVRAGE<br>Pt. ref.: Sol<br>Z Pt. ref.: 1,35<br>(m NGF) | NIVEAU NAPPE | IMPACT VISUEL | 907 | PROFONDEUR (m) | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FORMATION<br>GEOLOGIQUE | ALTITUDE (m NGF) | ECHANTILLON                              | VALEUR PID<br>(ppm) |
|                                                                                         |                                                                       | ¥            |               |     | 0,1            | Terre végétale limoneuse marron  Remblais (gravier, tesson de verre, brique, géotextile, béton) marron-noir.  Passe sableuse blanchâtre vers 5 m (E>O) et disparition des remblais noirs vers 7 m (E>O) qui deviennent marron.  Epaississement des remblais à partir de 10 m (E>O), de 0,1 m à 0,7 m de profondeur.  Argiles limoneuses marron  Limons argileux gris-vert qui se transforment en argiles à partir de 10 m (E>O) avec des inclusions indurées verdâtres et des passes noires (boue de forage?) - Odeur d'hydrocarbures. Les impacts sont plus visibles à partir de 12 m (E>O) et les argiles deviennent plus sombres à partir de 14 m (E>O). |                         | -0,2             | GAL3-5_T2O(1-1.5) +<br>GAL3-5_T2E(1-1.5) | 16,0                |
|                                                                                         |                                                                       | 1            |               |     | 1,0            | Fin du sondage à 1,80 mètres.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                  |                                          |                     |



RAMBOLL

Client: RETIA

Projet N°: FRTOTMS020-P2

Investigations complémentaires

GAL3-5 Vauvert (30), FRANCE Coupe lithologique de la tranchée: GAL3-5\_T2

Dessiné par : VDA Vérifié par : ADE

Version : 01 Date : -



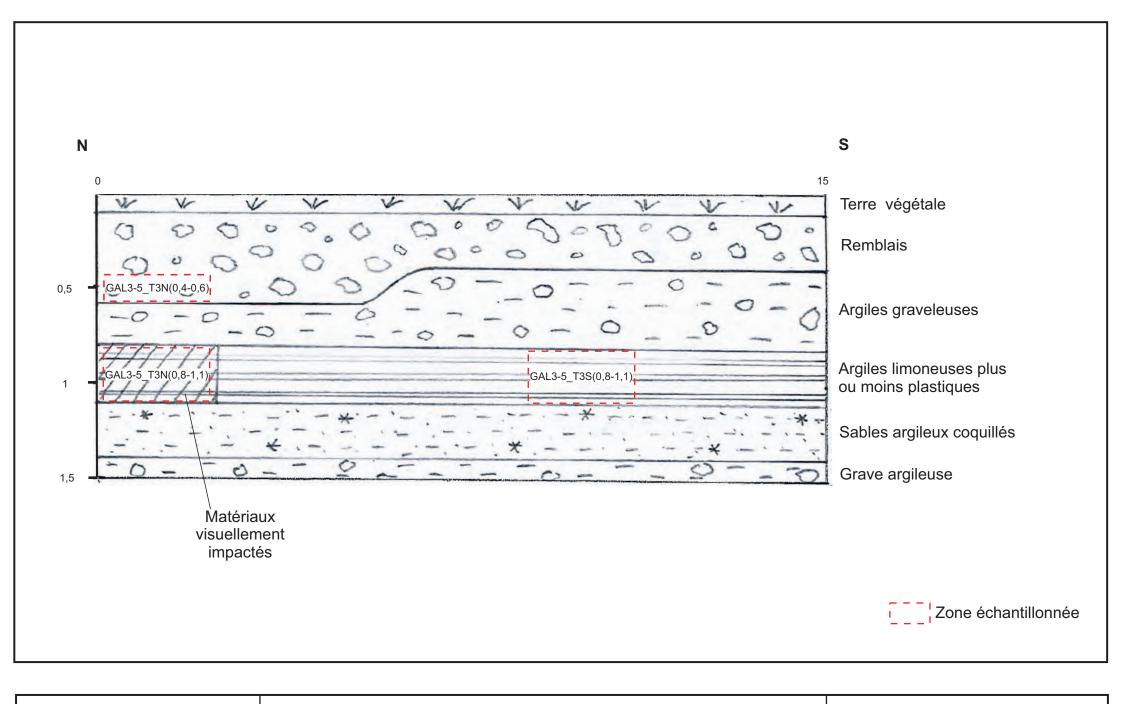


155, Rue Louis de Broglie, 13100 Aix-en-Provence - France Tel : +33 (0)4 42 90 74 96

CLIENT / SITE: Total - RETIA / GAL3-5

PROJET / REF.: Investigations complémentaires / FRTOTMS020-P2

DATE DEBUT: 21/09/2020 13:55:00 DATE FIN: 21/09/2020 15:40:00 COORDONNEES (RGF 93 m): X:803 501 - Y:6 282 781


FOREUR: EJM HYDROVAC

ALTITUDE DU SOL (m NGF) : 1,25

TECHNIQUE: Fouille 10-TP NIVEAU DE LA NAPPE: 1.1 m - 0.15 m NGF

DESSINE PAR : VDA VERIFIE PAR : ADE REMARQUES : Réalisation tranchée du nord vers le sud

| INE PAR: VDA                                                          |                                                            | '                                                          | VERIFIE P                                                                          | AR :                                                                               | ADE REMARQUES: Réalisation tranchée du                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nord vers le su                                               | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| COUPE<br>DE L'OUVRAGE<br>Pt. ref.: Sol<br>Z Pt. ref.: 1,25<br>(m NGF) | NIVEAU NAPPE                                               | IMPACT VISUEL                                              | 907                                                                                | PROFONDEUR (m)                                                                     | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FORMATION<br>GEOLOGIQUE                                       | ALTITUDE (m NGF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ECHANTILLON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VALEUR PID<br>(ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                       | $\nabla$                                                   |                                                            |                                                                                    | 0,1<br>0,6<br>0,8<br>1,1<br>1,4<br>1,5                                             | Terre végétale limoneuse marron  Remblais dans matrice limono-argileuse (brique, plastique, verre). Remblais noirs à partir de 6 m entre 0,1 m et 0,4 m de profondeur.  Argiles graveleuses marron-gris  Argiles limoneuses grises plus ou moins plastiques avec passes noires en limite inférieure de la formation (boue de forage ?) de 0 à 2,5 m (N>S) - Odeur d'hydrocarbures.  Sables argileux coquiillés gris - Présence d'eau (irisations)  Grave argileuse marron-beige - Présence d'eau (irisations)  Fin du sondage à 1,50 mètres. |                                                               | 0,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GAL3-5_T3N(0.8-1.1) + GAL3-5_T3S(0.8-1.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                       |                                                            |                                                            |                                                                                    |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                       | COUPE<br>DE L'OUVRAGE<br>Pt. ref.: Sol<br>Z Pt. ref.: 1,25 | COUPE DE L'OUVRAGE  Pt. ref.: Sol Z Pt. ref.: 1,25 (m NGF) | COUPE DE L'OUVRAGE  Pt. ref.: Sol Z Pt. ref.: 1,25 (m NGF)  Pt. ref.: 1,25 (m NGF) | COUPE DE L'OUVRAGE  Pt. ref.: Sol Z Pt. ref.: 1,25 (m NGF)  Pt. ref.: 1,25 (m NGF) | COUPE DE L'OUVRAGE  Pt. ref.: Sol Z Pt. ref.: 1,25 (m NGF)  Pt. ref.: 1,25 (m NGF)  O O O O O O O O O O O O O O O O O O O                                                                                                                                                                                                                                                                                                                                                                                                                    | COUPE DE L'OUVRAGE  Pt. ref.: Sol Z Pt. ref.: 1,25 (m NGF)  1 | COUPE DE L'OUVRAGE  Pt. ref.: 501 Z Pt. ref.: 1,25 (m NGF)  Pt. ref.: 90 DESCRIPTION  DESCRIPTION  DESCRIPTION  DESCRIPTION  Pt. ref.: 90 DESCRIPTION  DESCRIPTION  DESCRIPTION  Argiles limoneuse marron  Remblais dans matrice limono-argileuse (brique, plastique, vere). Remblais noirs à partir de 6 m entre 0,1 m et 0,4 m de profondeur.  Argiles limoneuses grises plus ou moins plastiques avec passes noires en limite inférieure de la formation (boue de forage?) de 0 à 2,5 m (N>S) - Odeur d'hydrocarbures.  Sables argileux coquillés gris - Présence d'eau (irrisations)  1,1 Grave argileuse marron-beige - Présence d'eau (irrisations) | COUPE DE L'OUVRAGE Pt. ref.: Sol 2 Pt. ref.: 1,25 (m NGF)  Argiles graveleuses marron-gris  O,1  Argiles graveleuses marron-gris  O,8  Argiles graveleuses marron-gris  O,8  Argiles graveleuses marron-gris  O,8  Argiles graveleuses marron-gris  O,7  Argiles limoneuses grises plus ou moins plastiques avec passes noires en limite inférieure de la formation (boue de forage ?) de 0.2,5 m (N->S) - Odeur d'hydrocarbures.  O,2  O,2  O,3  O,4  O,7  O,7  Argiles graveleuses marron-gris  O,7  Argiles graveleuses marron-gris  O,7  O,7  O,7  O,7  O,7  O,7  O,7  O, | COUPE DE L'OUVRAGE Pt. ref: Sol 2 Pt. ref: 1.25 (m NGF)  1.5  Argiles graveleuses marron-gris  0.8  Argiles limoneuses grises plus ou moins plastiques avec passes notres en limite inférieure de la formation (boue de forage y de 0 a 2.5 m (N->5) - Odeur  1.1  Sables argileux coquillés gris - Présence d'eau (riisations)  1.4  Grave argileuse marron-beige - Présence d'eau (riisations) |



| RAMBOLL |  |
|---------|--|
|         |  |

#### Investigations complémentaires

| Dessiné par : | VDA | Vérifié par : ADE | Sources : |
|---------------|-----|-------------------|-----------|
| Version :     | 01  | Date : -          |           |

Projet No: FRTOTMS020-P2 Client: RETIA



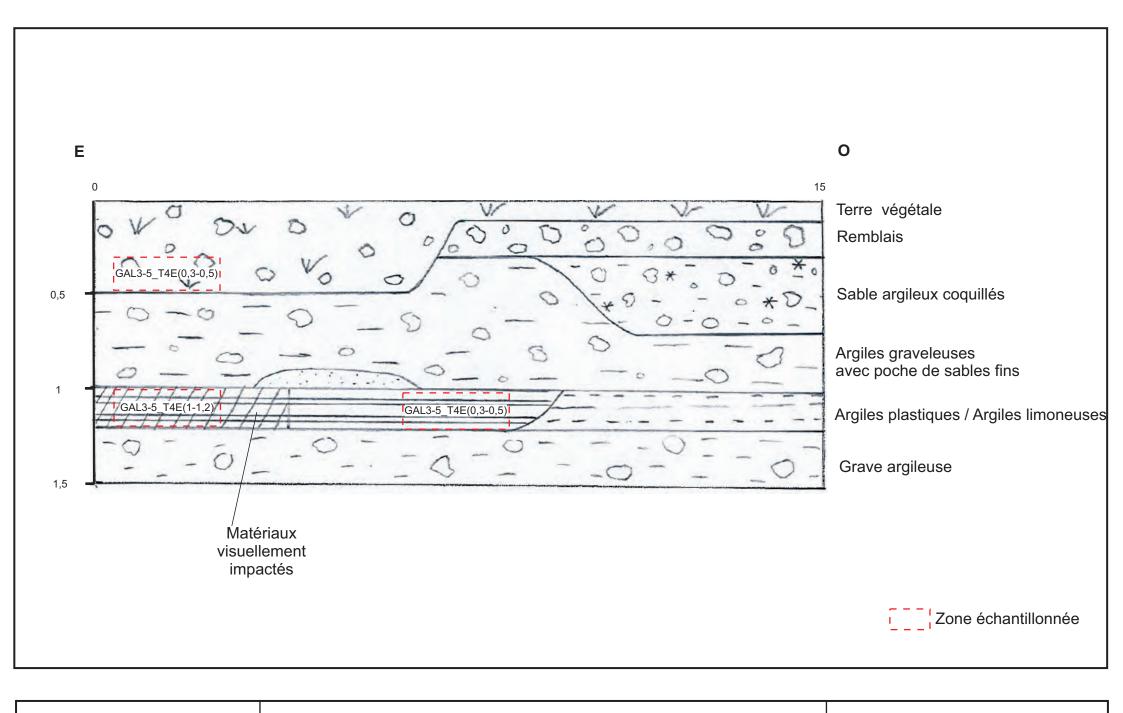


155, Rue Louis de Broglie, 13100 Aix-en-Provence - France Tel : +33 (0)4 42 90 74 96

CLIENT / SITE: Total - RETIA / GAL3-5

PROJET / REF.: Investigations complémentaires / FRTOTMS020-P2

DATE DEBUT: 21/09/2020 11:05:00 DATE FIN: 21/09/2020 13:00:00 COORDONNEES (RGF 93 m): X:803 486 - Y:6 282 783


FOREUR: EJM HYDROVAC

ALTITUDE DU SOL (m NGF) : 1,29

TECHNIQUE: Fouille 10-TP NIVEAU DE LA NAPPE: 0.9 m - 0.39 m NGF

DESSINE PAR : VDA VERIFIE PAR : ADE REMARQUES : Réalisation tranchée de l'est vers l'ouest

| DESS               | <b>NE PAR</b> : VDA                                                   |              | ,             | VERIFIE P | AR:            | ADE REMARQUES: Réalisation tranchée de l'                                                                                                                                                                                                                                                                                                                                                     | 'est vers l'oues        | t                |                                          |                  |
|--------------------|-----------------------------------------------------------------------|--------------|---------------|-----------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------|------------------------------------------|------------------|
| PROFONDEUR<br>(m)  | COUPE<br>DE L'OUVRAGE<br>Pt. ref.: Sol<br>Z Pt. ref.: 1,29<br>(m NGF) | NIVEAU NAPPE | IMPACT VISUEL | 907       | PROFONDEUR (m) | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                   | FORMATION<br>GEOLOGIQUE | ALTITUDE (m NGF) | ECHANTILLON                              | VALEUR PID (ppm) |
|                    |                                                                       |              |               |           | 0,5            | Terre végétale graveleuse à matrice limoneuse marron et remblais noirâtres (brique, béton, corde) à partir de 7 m (E>O) de 0,1 m à 0,3 m de profondeur.  Argiles plastiques graveleuses gris-marron qui deviennent des limons graveleux coquillés gris vers 10 m (E>O) de 0,3 m à 0,7 m de profondeur. Poche de sables fins jaunâtres vers 5 m (E>O) à la base de la couche - Présence d'eau. |                         | 0,8              | GAL3-5_T4E(0.3-0.5)                      | - 0,0            |
| 1,0<br><br><br>1,5 |                                                                       |              |               |           | 1,0            | Argiles plastiques grises (boue de forage?) avec inclusion de argiles blanchâtres indurées (boue de forage chaulée?) et passes noires (odeur d'hydrocarbures) de 0 à 4 m (N>S). Argiles deviennent des limons argileux vers 10 m (E>O).  Grave argileuse marron-beige - Présence d'eau (irisations)                                                                                           |                         | 0,1              | GAL3-5_T4E(1-1.2) +<br>GAL3-5_T4E(1-1.2) | 48,6             |
|                    |                                                                       |              |               |           |                | Fin du sondage à 1,50 mètres.                                                                                                                                                                                                                                                                                                                                                                 |                         |                  |                                          |                  |



| RAMBOLL |
|---------|
|---------|

Investigations complémentaires

GAL3-5 Vauvert (30), FRANCE

Dessiné par : VDA Vérifié par : ADE Sources :

Version : 01 Date : -

Projet No: FRTOTMS020-P2 Client: RETIA



### Tranchée- GAL3-5\_T5N

155, Rue Louis de Broglie, 13100 Aix-en-Provence - France Tel : +33 (0)4 42 90 74 96

CLIENT / SITE: Total - RETIA / GAL3-5

PROJET / REF.: Investigations complémentaires / FRTOTMS020-P2

DATE DEBUT: 17/09/2020 16:20:00 DATE FIN: 17/09/2020 16:55:00 COORDONNEES (RGF 93 m): X:803 522 - Y:6 282 747

ALTITUDE DU SOL (m NGF) : 0.74

FOREUR: EJM HYDROVAC TECHNIQUE: Fouille 10-TP

NIVEAU DE LA NAPPE: 1.6 m - -0.86 m NGF

DESSINE PAR: VDA VERIFIE PAR: ADE REMARQUES:

| DESS              | INE PAR: VDA                                                          |              | VERIFIE P | 'AR :             | ADE REMARQUES:                                                                                                                                                  |                         |                  |                     |                     |
|-------------------|-----------------------------------------------------------------------|--------------|-----------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------|---------------------|---------------------|
| PROFONDEUR<br>(m) | COUPE<br>DE L'OUVRAGE<br>Pt. ref.: Sol<br>Z Pt. ref.: 0,74<br>(m NGF) | NIVEAU NAPPE |           | PROFONDEUR (m)    | DESCRIPTION                                                                                                                                                     | FORMATION<br>GEOLOGIQUE | ALTITUDE (m NGF) | ECHANTILLON         | VALEUR PID<br>(ppm) |
|                   |                                                                       | ¥            |           | 0,3<br>1,0<br>1,1 | Argiles limoneuses marron  Argiles plastiques grises  Sables coquillés gris  Limons argileux noirs  Grave argileuse beige à grise - Présence d'eau (irisations) |                         | -0,9             | GAL3-5_T5N(1.1-1.6) | 0,0                 |
|                   |                                                                       |              |           |                   | Fin du sondage à 1,70 mètres.                                                                                                                                   |                         |                  |                     |                     |



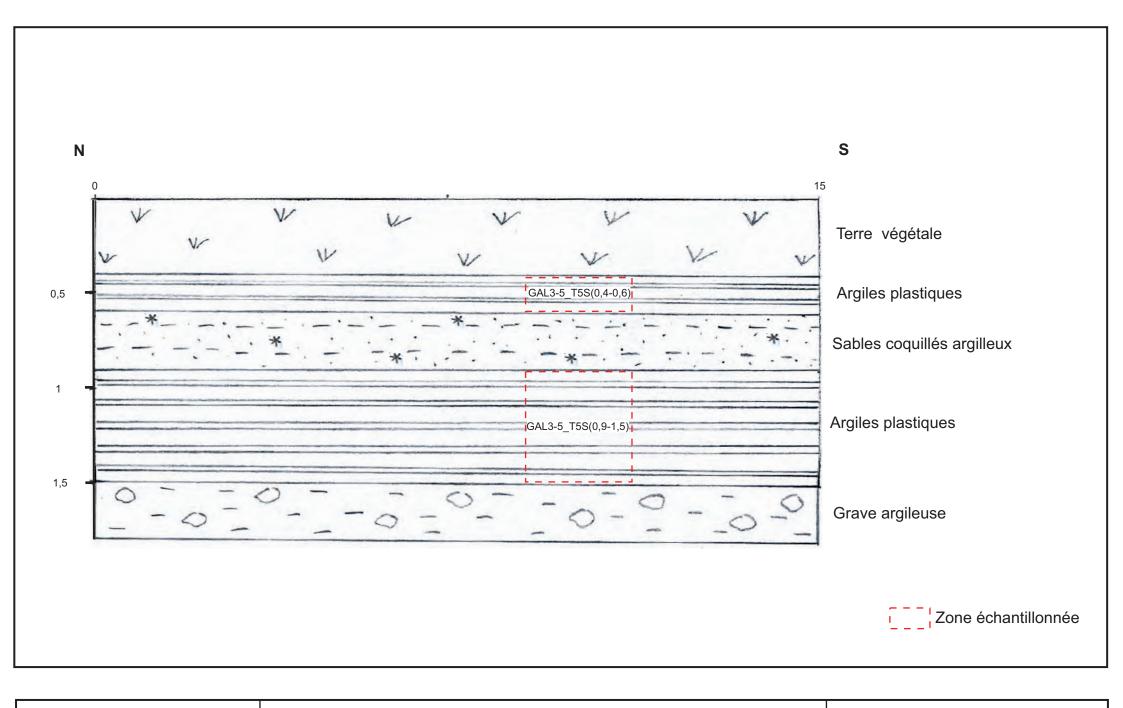
# Tranchée- GAL3-5\_T5S

155, Rue Louis de Broglie, 13100 Aix-en-Provence - France Tel : +33 (0)4 42 90 74 96

CLIENT / SITE: Total - RETIA / GAL3-5

PROJET / REF.: Investigations complémentaires / FRTOTMS020-P2

DATE DEBUT: 16/09/2020 15:00:00 DATE FIN: 16/09/2020 16:05:00 COORDONNEES (RGF 93 m): X:803 528 - Y:6 282 739


ALTITUDE DU SOL (m NGF) : 0,55

FOREUR: EJM HYDROVAC
TECHNIQUE: Fouille 10-TP

NIVEAU DE LA NAPPE: 1.5 m - -0.95 m NGF

DESSINE PAR : VDA VERIFIE PAR : ADE REMARQUES : Réalisation tranchée du nord vers le sud

| DESS                     | NE PAR: VDA                                                           |                 | ,             | VERIFIE P                              | AR:            | ADE REMARQUES: Réalisation tranchée du                                                                       | nord vers le su         | d                |                     |                     |
|--------------------------|-----------------------------------------------------------------------|-----------------|---------------|----------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------|-------------------------|------------------|---------------------|---------------------|
| PROFONDEUR<br>(m)        | COUPE<br>DE L'OUVRAGE<br>Pt. ref.: Sol<br>Z Pt. ref.: 0,55<br>(m NGF) | NIVEAU NAPPE    | IMPACT VISUEL | 907                                    | PROFONDEUR (m) | DESCRIPTION                                                                                                  | FORMATION<br>GEOLOGIQUE | ALTITUDE (m NGF) | ECHANTILLON         | VALEUR PID<br>(ppm) |
|                          |                                                                       |                 |               | 77 77 77 77 77 77 77 77 77 77 77 77 77 | 0,4            | Terre végétale limoneuse marron  Argiles plastiques grises  Sables coquillés argilleux gris - Présence d'eau |                         | 0,0              | GAL3-5_T5S(0.4-0.6) | 0,0                 |
| - 1,0<br><br><br><br>1,5 |                                                                       | $ar{ar{ abla}}$ |               |                                        | 1,5            | Argiles plastiques gris sombre  Grave argileuse beige - Présence d'eau (absence d'irisation)                 |                         | -0,9             | GAL3-5_T5S(0.9-1.5) | 0,0                 |
|                          |                                                                       |                 |               |                                        | 1,8            |                                                                                                              |                         |                  |                     |                     |
|                          |                                                                       |                 |               |                                        |                | Fin du sondage à 1,80 mètres.                                                                                |                         |                  |                     |                     |



RAMBOLL

Client: RETIA

Projet N°: FRTOTMS020-P2

Investigations complémentaires

GAL3-5 Vauvert (30), FRANCE Coupe lithologique de la tranchée: GAL3-5\_T5S

Dessiné par : VDA Vérifié par : ADE

Version : 01 Date : -



### Tranchée- GAL3-5\_T6N

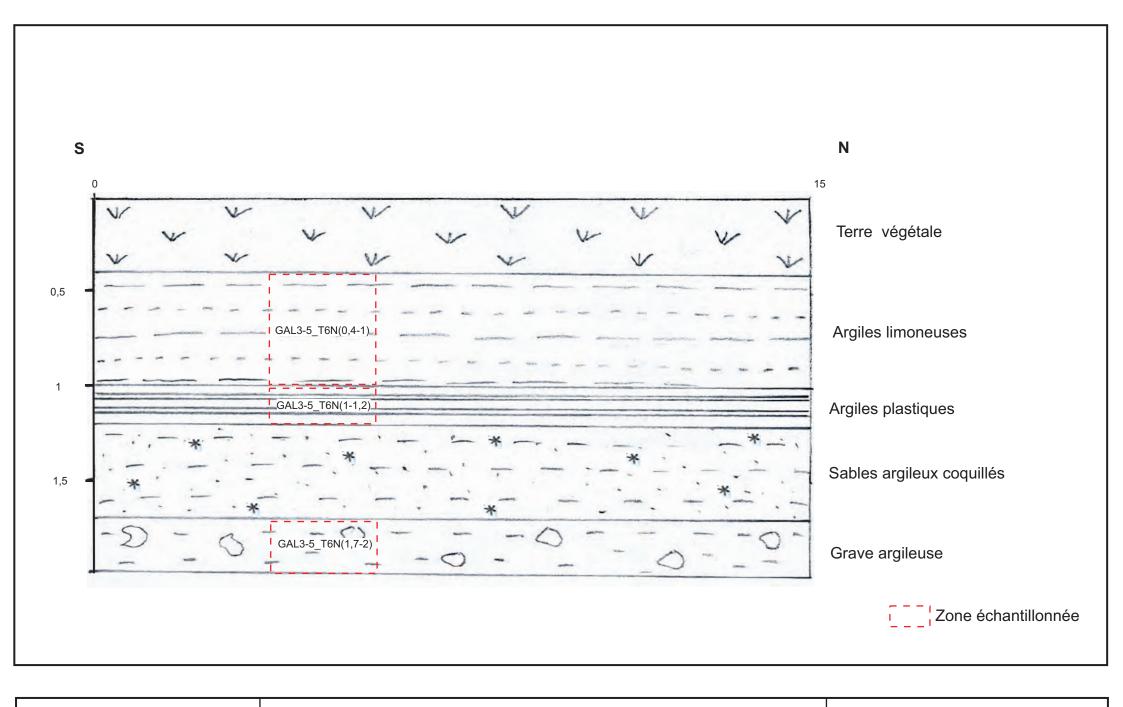
(PAGE 1/

155, Rue Louis de Broglie, 13100 Aix-en-Provence - France Tel : +33 (0)4 42 90 74 96

CLIENT / SITE: Total - RETIA / GAL3-5

PROJET / REF.: Investigations complémentaires / FRTOTMS020-P2

DATE DEBUT: 16/09/2020 11:30:00 DATE FIN: 16/09/2020 13:50:00 COORDONNEES (RGF 93 m): X:803 534 - Y:6 282 731


ALTITUDE DU SOL (m NGF) : 0,59

**FOREUR**: EJM HYDROVAC **TECHNIQUE**: Fouille 10-TP

NIVEAU DE LA NAPPE : 1.2 m - -0.61 m NGF

DESSINE PAR: VDA VERIFIE PAR: ADE REMARQUES: Réalisation tranchée du sud vers le nord

| DESSI             | INE PAR: VDA                                                          |              | ,             | VERIFIE P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AR:            | ADE REMARQUES: Réalisation tranchée du                       | sud vers le nor         | rd               |                   |                     |
|-------------------|-----------------------------------------------------------------------|--------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------|-------------------------|------------------|-------------------|---------------------|
| PROFONDEUR<br>(m) | COUPE<br>DE L'OUVRAGE<br>Pt. ref.: Sol<br>Z Pt. ref.: 0,59<br>(m NGF) | NIVEAU NAPPE | IMPACT VISUEL | 907                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PROFONDEUR (m) | DESCRIPTION                                                  | FORMATION<br>GEOLOGIQUE | ALTITUDE (m NGF) | ECHANTILLON       | VALEUR PID<br>(ppm) |
|                   |                                                                       |              |               | \(\frac{1}{2}\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1} | 0,4            | Terre végétale limoneuse marron  Argiles limoneuses marron   |                         |                  | GAL3-5_T6N(0.4-1) | 0,0                 |
|                   |                                                                       | ⊻            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,0            | Arglies plastiques grises                                    |                         | -0,4             | GAL3-5_T6N(1-1.2) |                     |
| 2,0               |                                                                       |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,0            | Grave argileuse beige - Présence d'eau (absence d'irisation) |                         | -1,4             | GAL3-5_T6N(1.7-2) |                     |
|                   |                                                                       |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                              |                         |                  |                   |                     |



| RAMBOLL |
|---------|
|         |

Projet N°: FRTOTMS020-P2

Client: RETIA

#### Investigations complémentaires

| Dessiné par : | VDA | Vérifié par : ADE | Sources : |
|---------------|-----|-------------------|-----------|
| Version :     | 01  | Date : -          |           |



### Tranchée- GAL3-5\_T6S

155, Rue Louis de Broglie, 13100 Aix-en-Provence - France Tel : +33 (0)4 42 90 74 96

CLIENT / SITE: Total - RETIA / GAL3-5

PROJET / REF.: Investigations complémentaires / FRTOTMS020-P2

DATE DEBUT: 16/09/2020 10:10:00 DATE FIN: 16/09/2020 11:10:00 COORDONNEES (RGF 93 m): X:803 540 - Y:6 282 723

ALTITUDE DU SOL (m NGF) : 0,61

FOREUR: EJM HYDROVAC TECHNIQUE: Fouille 10-TP

NIVEAU DE LA NAPPE: 1.3 m - -0.69 m NGF

| DESS              | INE PAR: VDA                                                          |              | VERIFIE F     | PAR:           | ADE REMARQUES:                                               |                         |                  |                   |                     |
|-------------------|-----------------------------------------------------------------------|--------------|---------------|----------------|--------------------------------------------------------------|-------------------------|------------------|-------------------|---------------------|
| PROFONDEUR<br>(m) | COUPE<br>DE L'OUVRAGE<br>Pt. ref.: Sol<br>Z Pt. ref.: 0,61<br>(m NGF) | NIVEAU NAPPE | IMPACT VISUEL | PROFONDEUR (m) | DESCRIPTION                                                  | FORMATION<br>GEOLOGIQUE | ALTITUDE (m NGF) | ECHANTILLON       | VALEUR PID<br>(ppm) |
| :                 |                                                                       |              | <u> </u>      |                | Terre végétale limoneuse marron                              |                         | _                |                   |                     |
|                   |                                                                       |              |               | 0,3            | Argiles limoneuses beige                                     |                         |                  |                   |                     |
| 0,5               |                                                                       |              |               |                |                                                              |                         |                  | GAL3-5_T6S(0.3-1) | 0,0                 |
|                   |                                                                       |              |               |                |                                                              |                         |                  |                   |                     |
| _ 1,0             |                                                                       |              |               | 1,0            | Argiles plastiques grises                                    |                         | -0,4             | GAL3-5_T6S(1-1.3) |                     |
|                   | -                                                                     | ĪΨ           | . 0 - 0       | 1,3            | Grave argileuse grise - Présence d'eau (absence d'irisation) |                         | -0,7             |                   | -                   |
| 1,5<br>           |                                                                       |              |               |                |                                                              |                         |                  |                   |                     |
| -                 |                                                                       |              |               | 1,8            | Grave argileuse beige - Présence d'eau (absence d'irisation) |                         |                  |                   |                     |
| 2,0               |                                                                       |              |               | 2,0            | Fin du sondage à 2,00 mètres.                                |                         |                  |                   |                     |
|                   |                                                                       |              |               |                |                                                              |                         |                  |                   |                     |



### Tranchée- GAL3-5\_T7N

(PAGE 1/1)

155, Rue Louis de Broglie, 13100 Aix-en-Provence - France Tel : +33 (0)4 42 90 74 96

CLIENT / SITE: Total - RETIA / GAL3-5

PROJET / REF.: Investigations complémentaires / FRTOTMS020-P2

DATE DEBUT: 17/09/2020 17:00:00 DATE FIN: 17/09/2020 17:45:00 COORDONNEES (RGF 93 m): X:803 536 - Y:6 282 754

ALTITUDE DU SOL (m NGF): 0,84

FOREUR: EJM HYDROVAC
TECHNIQUE: Fouille 10-TP

NIVEAU DE LA NAPPE: 1.6 m - -0.76 m NGF

DESSINE PAR: VDA VERIFIE PAR: ADE REMARQUES:

| DESS              | NE PAR: VDA                                                           |              |               | VERIFIE P | AR:            | ADE REMARQUES:                                                                                                |                         |                  |                     |                     |
|-------------------|-----------------------------------------------------------------------|--------------|---------------|-----------|----------------|---------------------------------------------------------------------------------------------------------------|-------------------------|------------------|---------------------|---------------------|
| PROFONDEUR<br>(m) | COUPE<br>DE L'OUVRAGE<br>Pt. ref.: Sol<br>Z Pt. ref.: 0,84<br>(m NGF) | NIVEAU NAPPE | IMPACT VISUEL | 907       | PROFONDEUR (m) | DESCRIPTION                                                                                                   | FORMATION<br>GEOLOGIQUE | ALTITUDE (m NGF) | ECHANTILLON         | VALEUR PID<br>(ppm) |
| <br>              |                                                                       |              |               |           | 0,1            | Terre végétale limoneuse marron Argiles plastiques grises à noires (boue de forages?) - Odeur d'hydrocarbures |                         |                  | GAL3-5_T7N(0-0.5)   | 37,6                |
|                   |                                                                       |              |               |           | 0,5            | Argiles plastiques grises (boue de forages?)                                                                  |                         | 0,3              |                     | 0,0                 |
| - 1,0<br>         |                                                                       |              |               |           | 0,9            | Sables coquillés gris - Présence d'eau  Argiles plastiques grises                                             |                         |                  |                     | 7,7                 |
| <br><br>1,5       |                                                                       | $\Box$       |               |           | 1,6            |                                                                                                               |                         |                  |                     | 1,5                 |
|                   |                                                                       | _            |               |           | 1,8            | Grave argileuse grise à beige - Présence d'eau (faibles arrivées)  Fin du sondage à 1,80 mètres.              |                         | -1,0             | GAL3-5_T7N(1.6-1.8) | 8,7                 |
|                   |                                                                       |              |               |           |                |                                                                                                               |                         |                  |                     |                     |
|                   |                                                                       |              |               |           |                |                                                                                                               |                         |                  |                     |                     |

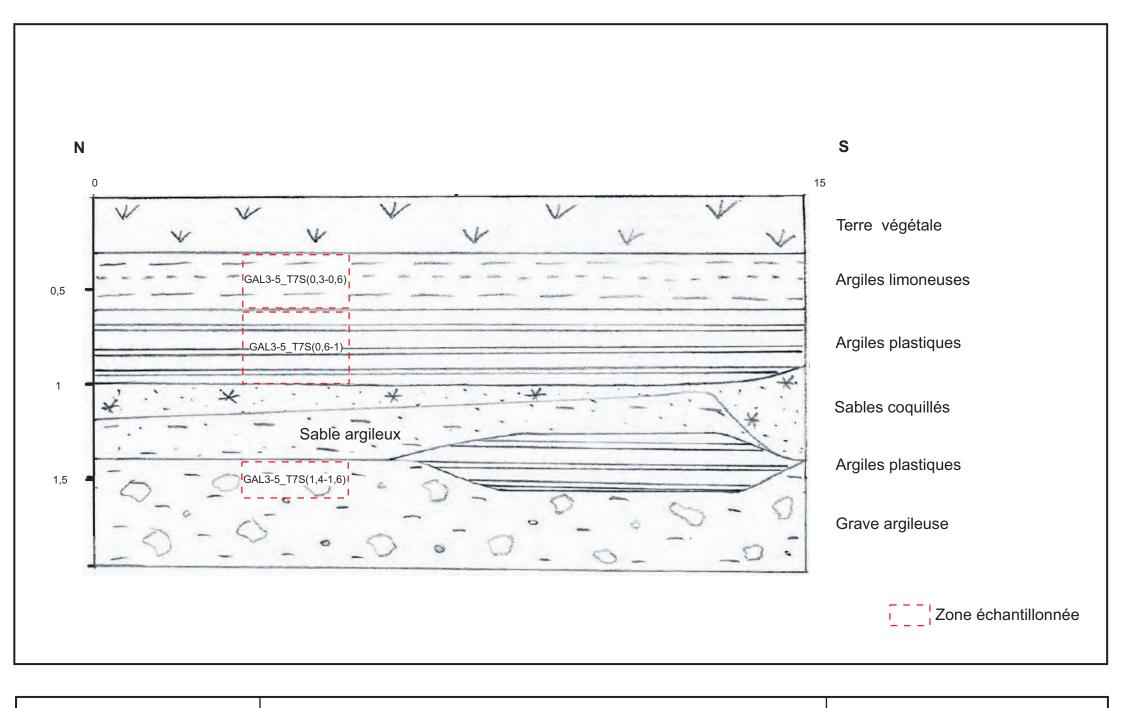


### Tranchée- GAL3-5\_T7S

155, Rue Louis de Broglie, 13100 Aix-en-Provence - France Tel : +33 (0)4 42 90 74 96

CLIENT / SITE: Total - RETIA / GAL3-5

PROJET / REF.: Investigations complémentaires / FRTOTMS020-P2


DATE DEBUT: 16/09/2020 17:00:00 DATE FIN: 16/09/2020 18:25:00 COORDONNEES (RGF 93 m): X:803 542 - Y:6 282 746

ALTITUDE DU SOL (m NGF) : 0,53

FOREUR: EJM HYDROVAC TECHNIQUE: Fouille 10-TP

NIVEAU DE LA NAPPE: 1.2 m - -0.67 m NGF

| PROFONDEUR (m)  FORMATION  FORMAT | VALEUR PID (ppm) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Terre vegéfale limoneuse marron  2 2 3 3 4 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,0              |



RAMBOLL

Client: RETIA

Projet N°: FRTOTMS020-P2

Investigations complémentaires

GAL3-5 Vauvert (30), FRANCE Coupe lithologique de la tranchée: GAL3-5\_T7S

Dessiné par : VDA Vérifié par : ADE

Version : 01 Date : -

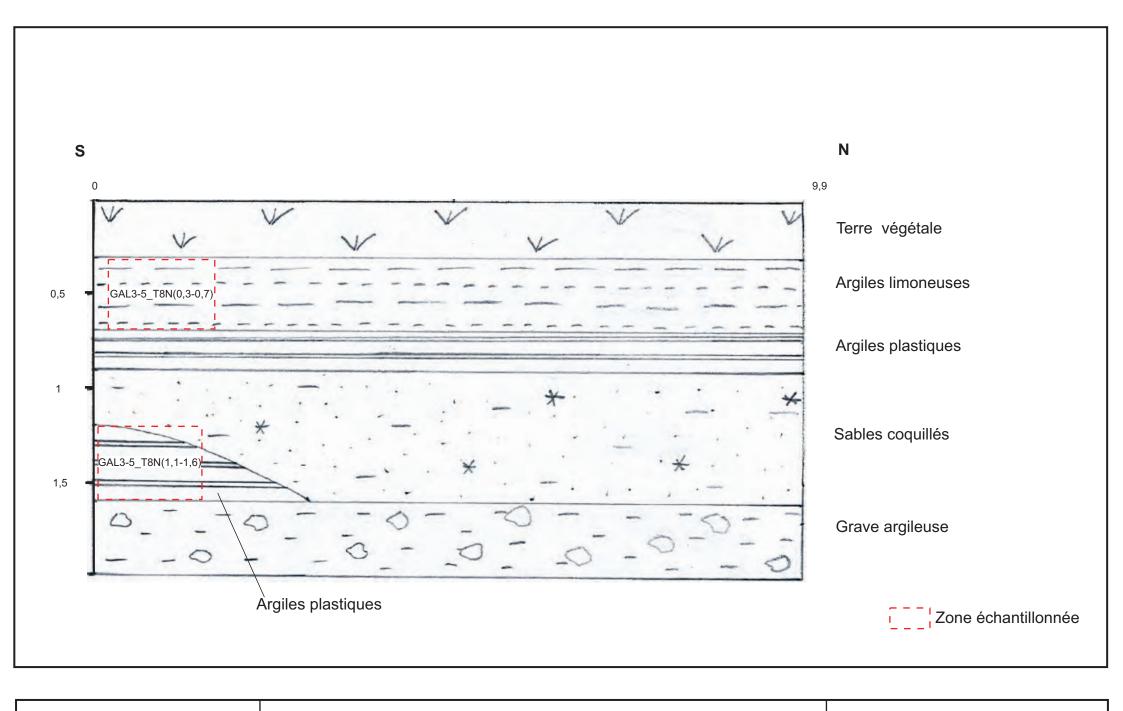


## Tranchée- GAL3-5\_T8N

155, Rue Louis de Broglie, 13100 Aix-en-Provence - France Tel : +33 (0)4 42 90 74 96

CLIENT / SITE: Total - RETIA / GAL3-5

PROJET / REF.: Investigations complémentaires / FRTOTMS020-P2


DATE DEBUT: 16/09/2020 16:10:00 DATE FIN: 16/09/2020 16:55:00 COORDONNEES (RGF 93 m): X:803 549 - Y:6 282 737

ALTITUDE DU SOL (m NGF) : 0,55

FOREUR: EJM HYDROVAC TECHNIQUE: Fouille 10-TP

NIVEAU DE LA NAPPE: 1.2 m - -0.65 m NGF

| DESS              | INE PAR: VDA                                                          |              |               | VERIFIE P | AR:            | ADE REMARQUES: Réalisation tranchée du s                                                                                                                                         | ud vers le nor          | d                |                     |                  |
|-------------------|-----------------------------------------------------------------------|--------------|---------------|-----------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------|---------------------|------------------|
| PROFONDEUR (m)    | COUPE<br>DE L'OUVRAGE<br>Pt. ref.: Sol<br>Z Pt. ref.: 0,55<br>(m NGF) | NIVEAU NAPPE | IMPACT VISUEL | 907       | PROFONDEUR (m) | DESCRIPTION                                                                                                                                                                      | FORMATION<br>GEOLOGIQUE | ALTITUDE (m NGF) | ECHANTILLON         | VALEUR PID (ppm) |
| <br><br><br>0,5   |                                                                       |              |               |           | 0,3            | Terre végétale limoneuse marron  Argiles limoneuses marron                                                                                                                       |                         |                  | GAL3-5_T8N(0.3-0.7) | 0,0              |
| <br><br><br>- 1,0 |                                                                       |              |               |           | 0,7            | Argiles plastiques grises  Sables coquillés gris - Présence d'eau (absence d'irisation). Epaississement de la couche vers le nord (centre du bourbier) jusqu'à 0,7 m d'épaisseur |                         | -0,2             |                     |                  |
| <br>              |                                                                       | ⊻            |               |           | 1,2            | Argiles plastiques gris sombre. Amincissement de la couche jusqu'à disparition vers 3 m (S>N) (tranchée = 9,9 m de long)                                                         |                         |                  | GAL3-5_T8N(1.1-1.6) | 0,0              |
|                   |                                                                       |              |               |           | 1,6            | Grave argileuse grise à ocre - Présence d'eau (absence d'irisation)                                                                                                              |                         | -1,1             |                     |                  |
| 2,0               |                                                                       |              |               | 0 0       | 2,0            | Fin du sondage à 2,00 mètres.                                                                                                                                                    |                         |                  |                     |                  |



|             | RAMB          | &LL      |       |
|-------------|---------------|----------|-------|
| Projet N° : | FRTOTMS020-P2 | Client : | RETIA |

GAL3-5 Vauvert (30), FRANCE

| Coupe lithologique de la | tranchée: GAL3-5_T8N |
|--------------------------|----------------------|
|--------------------------|----------------------|

| Dessiné par : | VDA | Vérifié par : ADE | Sources : |
|---------------|-----|-------------------|-----------|
| Version :     | 01  | Date : -          |           |



### Tranchée- GAL3-5\_T8S

155, Rue Louis de Broglie, 13100 Aix-en-Provence - France Tel : +33 (0)4 42 90 74 96

CLIENT / SITE: Total - RETIA / GAL3-5

PROJET / REF.: Investigations complémentaires / FRTOTMS020-P2

DATE DEBUT: 17/09/2020 11:40:00 DATE FIN: 17/09/2020 12:20:00 COORDONNEES (RGF 93 m): X:803 554 - Y:6 282 728

ALTITUDE DU SOL (m NGF) : 0,56

FOREUR: EJM HYDROVAC
TECHNIQUE: Fouille 10-TP

NIVEAU DE LA NAPPE: 1.8 m - -1.24 m NGF

DESSINE PAR: VDA VERIFIE PAR: ADE REMARQUES:

| DESSI             | NE PAR: VDA                                                |                       | ١             | /ERIFIE P | AR:            | ADE REMARQUES:                                                       |                         |                  |                     |                     |
|-------------------|------------------------------------------------------------|-----------------------|---------------|-----------|----------------|----------------------------------------------------------------------|-------------------------|------------------|---------------------|---------------------|
| PROFONDEUR<br>(m) | COUPE DE L'OUVRAGE  Pt. ref.: Sol Z Pt. ref.: 0,56 (m NGF) | NIVEAU NAPPE          | IMPACT VISUEL | 907       | PROFONDEUR (m) | DESCRIPTION                                                          | FORMATION<br>GEOLOGIQUE | ALTITUDE (m NGF) | ECHANTILLON         | VALEUR PID<br>(ppm) |
| <br><br><br>- 0,5 |                                                            |                       |               |           | 0,2            | Terre végétale limoneuse marron Argiles limoneuses beige             |                         |                  | GAL3-5_T8S(0.2-0.7) |                     |
|                   |                                                            |                       |               |           | 1,1            | Argiles plastiques coquillées gris-vert  Argiles plastiques grises   |                         | -0,1             |                     | 0,0                 |
| <br><br>- 1,5<br> |                                                            |                       |               |           | 1,3            |                                                                      |                         | -0,7             | GAL3-5_T8S(1.3-1.5) |                     |
|                   |                                                            | $oxed{ar{ar{\beta}}}$ |               |           | 1,8            | Grave argileuse beige à grise - Présence d'eau (absence d'irisation) |                         |                  |                     |                     |
|                   |                                                            |                       |               |           |                | Fin du sondage à 2,20 mètres.                                        |                         |                  |                     |                     |



### Tranchée- GAL3-5\_T9N

155, Rue Louis de Broglie, 13100 Aix-en-Provence - France Tel : +33 (0)4 42 90 74 96

CLIENT / SITE: Total - RETIA / GAL3-5

PROJET / REF.: Investigations complémentaires / FRTOTMS020-P2

DATE DEBUT: 17/09/2020 18:00:00 DATE FIN: 17/09/2020 18:40:00 COORDONNEES (RGF 93 m): X:803 548 - Y:6 282 762

ALTITUDE DU SOL (m NGF) : 0,83

FOREUR: EJM HYDROVAC TECHNIQUE: Fouille 10-TP

NIVEAU DE LA NAPPE: m - m NGF

DESSINE PAR: VDA VERIFIE PAR: ADE REMARQUES:

| DESS              | INE PAR: VDA                                                          |              | ,             | VERIFIE P | AR :           | ADE REMARQUES:                                                                                  |                         |                  |                                        |                     |
|-------------------|-----------------------------------------------------------------------|--------------|---------------|-----------|----------------|-------------------------------------------------------------------------------------------------|-------------------------|------------------|----------------------------------------|---------------------|
| PROFONDEUR<br>(m) | COUPE<br>DE L'OUVRAGE<br>Pt. ref.: Sol<br>Z Pt. ref.: 0,83<br>(m NGF) | NIVEAU NAPPE | IMPACT VISUEL | 907       | PROFONDEUR (m) | DESCRIPTION                                                                                     | FORMATION<br>GEOLOGIQUE | ALTITUDE (m NGF) | ECHANTILLON                            | VALEUR PID<br>(ppm) |
|                   |                                                                       |              |               |           | 0,1            | Argiles grises avec inclusion de matière goudronneuse (boue de forage?) - Odeur d'hydrocarbures |                         | 0,7              | GAL3-5_T9N(0-0.1)  GAL3-5_T9N(0.1-0.4) | 12,9                |
|                   |                                                                       |              |               |           | 1,2            | Argiles plastiques grises (boue de forage?)                                                     |                         |                  |                                        | 3,7                 |
|                   |                                                                       |              |               |           | 1,3            | Argiles plastiques grises                                                                       |                         |                  | GAL3-5_T9N(1.7-1.9)                    | 0,0                 |
|                   |                                                                       |              |               |           | 1,9            | Fin du sondage à 1,90 mètres.                                                                   |                         | 1,1              | V V                                    |                     |

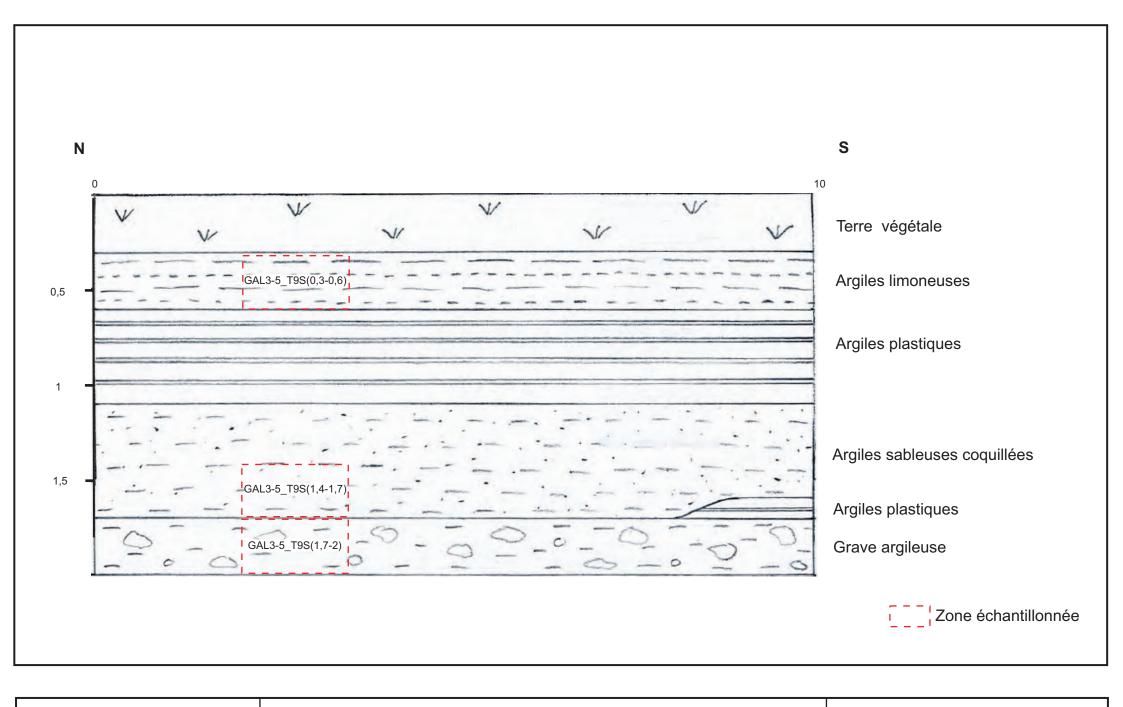


### Tranchée- GAL3-5\_T9S

155, Rue Louis de Broglie, 13100 Aix-en-Provence - France Tel : +33 (0)4 42 90 74 96

CLIENT / SITE: Total - RETIA / GAL3-5

PROJET / REF.: Investigations complémentaires / FRTOTMS020-P2


DATE DEBUT: 17/09/2020 10:05:00 DATE FIN: 17/09/2020 11:10:00 COORDONNEES (RGF 93 m): X:803 553 - Y:6 282 755

ALTITUDE DU SOL (m NGF) : 0,63

FOREUR: EJM HYDROVAC
TECHNIQUE: Fouille 10-TP

NIVEAU DE LA NAPPE : 1.5 m - -0.87 m NGF

| DESSI             | NE PAR: VDA                                            |                          |              | VERIFIE       | PAR :          | ADE REMARQUES: Réalisation tranchée du                                                                                                                                                                                                                                                          | nord vers le su         | ıd               |                     |                     |
|-------------------|--------------------------------------------------------|--------------------------|--------------|---------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------|---------------------|---------------------|
| PROFONDEUR<br>(m) | COUPE<br>DE L'OUVRAGI<br>Pt. ref.<br>Z Pt. re<br>(m NG | : Sol<br>ef.: 0,63<br>F) | NIVEAU NAPPE | IMPACT VISUEL | PROFONDEUR (m) | DESCRIPTION                                                                                                                                                                                                                                                                                     | FORMATION<br>GEOLOGIQUE | ALTITUDE (m NGF) | ECHANTILLON         | VALEUR PID<br>(ppm) |
|                   |                                                        |                          |              |               | 7              |                                                                                                                                                                                                                                                                                                 |                         |                  |                     |                     |
| <br>_ 0,5<br>     |                                                        |                          |              |               | 0,6            | Argiles limoneuses beiges  Argiles plastiques grises                                                                                                                                                                                                                                            |                         | 0,0              | GAL3-5_T9S(0.3-0.6) | 0,0                 |
|                   |                                                        |                          |              |               |                | Argues plastiques grises                                                                                                                                                                                                                                                                        |                         |                  |                     |                     |
| 1,0<br>           |                                                        |                          |              |               | 1,1            | Argiles sableuses coquillées grises - Présence d'eau. Argiles de plus en plus sableuses vers sud (centre du bourbier) sur la partie supérieure de la couche. Argiles plastiques gris sombre à la base des argiles sableuses en toute fin de tranchée (centre du bourbier) sur 0,1 m d'épaisseur |                         |                  |                     |                     |
| <br><br>1,5       |                                                        |                          | $\nabla$     |               |                | sableuses en toute fin de tranchée (centre du bourbier) sur 0,1 m d'épaisseur                                                                                                                                                                                                                   |                         |                  | CALSE TOSMAND       | -                   |
|                   |                                                        |                          |              | .0 -          | 1,7            | Grave argileuse beige à grise - Présence d'eau vers 2 m                                                                                                                                                                                                                                         |                         | -1,1             |                     | _                   |
| 2,0               |                                                        |                          |              | ° -           | 2,0            | Fin du sondage à 2,00 mètres.                                                                                                                                                                                                                                                                   |                         | -1,4             | GAL3-5_T9S(1.7-2)   |                     |
|                   |                                                        |                          |              |               |                |                                                                                                                                                                                                                                                                                                 |                         |                  |                     |                     |
|                   |                                                        |                          |              |               |                |                                                                                                                                                                                                                                                                                                 |                         |                  |                     |                     |



RAMBOLL

Client: RETIA

Projet N°: FRTOTMS020-P2

#### Investigations complémentaires

GAL3-5 Vauvert (30), FRANCE

| Coune | lithologique  | de | la | tranchée     | GAI 3-5 | TOS   |
|-------|---------------|----|----|--------------|---------|-------|
| coupe | iitiioiogique | ue | ıa | ti alicilee. | GALS-S_ | ןכפו_ |

Dessiné par : VDA Vérifié par : ADE

Version : 01 Date : -

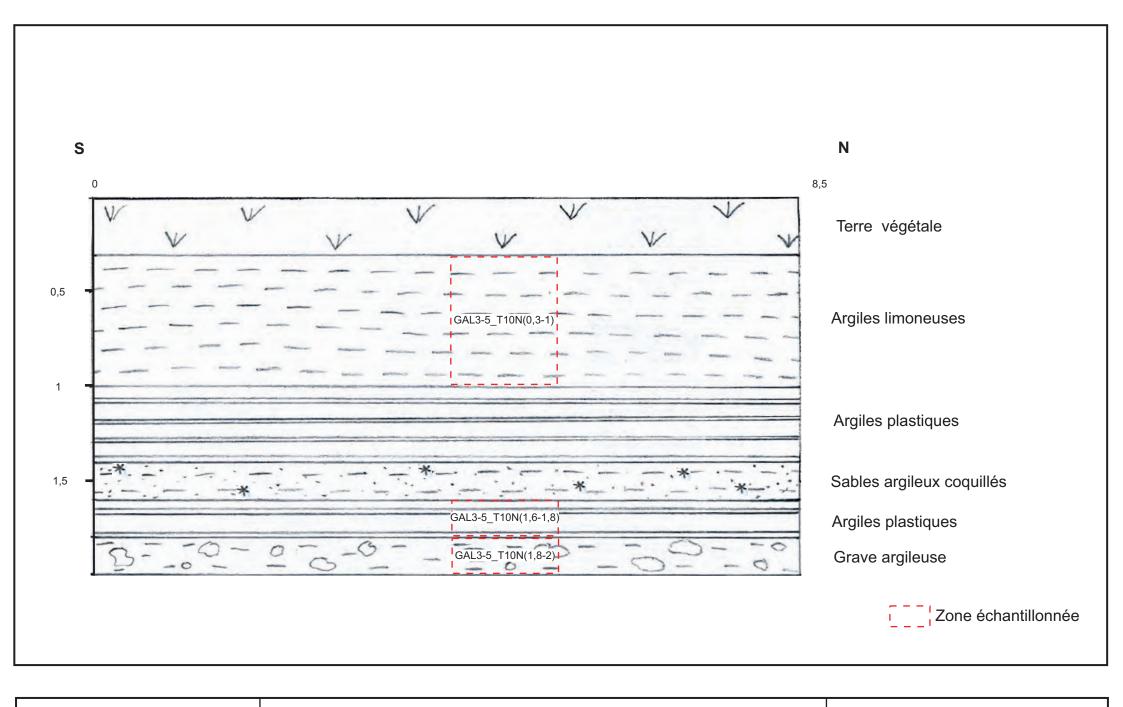


### Tranchée- GAL3-5\_T10N

155, Rue Louis de Broglie, 13100 Aix-en-Provence - France Tel : +33 (0)4 42 90 74 96

CLIENT / SITE: Total - RETIA / GAL3-5

PROJET / REF.: Investigations complémentaires / FRTOTMS020-P2


DATE DEBUT: 17/09/2020 08:30:00 DATE FIN: 17/09/2020 10:00:00 COORDONNEES (RGF 93 m): X:803 562 - Y:6 282 742

ALTITUDE DU SOL (m NGF) : 0,58

FOREUR: EJM HYDROVAC
TECHNIQUE: Fouille 10-TP

NIVEAU DE LA NAPPE: 1.8 m - -1.22 m NGF

| DESS              | NE PAR: VDA                                                |                |               | VERIFIE P | AR:            | ADE REMARQUES: Réalisation tranchée du                                                                                   | sud vers le nor         | d                |                      |                  |
|-------------------|------------------------------------------------------------|----------------|---------------|-----------|----------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------|----------------------|------------------|
| PROFONDEUR<br>(m) | COUPE DE L'OUVRAGE  Pt. ref.: Sol Z Pt. ref.: 0,58 (m NGF) | NIVEAU NAPPE   | IMPACT VISUEL | 700 F     | PROFONDEUR (m) | DESCRIPTION                                                                                                              | FORMATION<br>GEOLOGIQUE | ALTITUDE (m NGF) | ECHANTILLON          | VALEUR PID (ppm) |
|                   |                                                            |                |               | 7         | 0,3            | Terre végétale limoneuse marron  Argiles limoneuses beiges. Présence d'un lit de galet vers 0,7 m au sud de la tranchée. |                         |                  | GAL3-5_T10N(0.3-1)   |                  |
| 1,0               |                                                            |                |               |           | 1,0            | Argiles plastiques grises                                                                                                |                         | -0,4             |                      | 0,0              |
| <br>_ 1,5         |                                                            |                |               |           | 1,4            | Sable argileux coquillé gris - Présence d'eau                                                                            |                         |                  |                      |                  |
|                   |                                                            | <br>  <u>\</u> | <b>,</b><br>- |           | 1,6            | Argiles plastiques gris sombre                                                                                           |                         | -1,2             | GAL3-5_T10N(1.6-1.8) | 0,0              |
| 2,0               |                                                            |                |               | 0 -       | 2,0            | Grave argileuse beige à grise - Présence d'eau (absence d'irisation)                                                     |                         | -1,4             | GAL3-5_T10N(1.8-2)   |                  |
|                   |                                                            |                |               |           |                | Fin du sondage à 2,00 mètres.                                                                                            |                         |                  |                      |                  |



RAMBOLL

Client: RETIA

Projet N°: FRTOTMS020-P2

Investigations complémentaires

GAL3-5 Vauvert (30), FRANCE Coupe lithologique de la tranchée: GAL3-5\_T10N

Dessiné par : VDA Vérifié par : ADE

Version : 01 Date : -



### Tranchée- GAL3-5\_T10S

155, Rue Louis de Broglie, 13100 Aix-en-Provence - France Tel : +33 (0)4 42 90 74 96

CLIENT / SITE: Total - RETIA / GAL3-5

PROJET / REF.: Investigations complémentaires / FRTOTMS020-P2

DATE DEBUT: 17/09/2020 14:20:00 DATE FIN: 17/09/2020 15:15:00 COORDONNEES (RGF 93 m): X:803 567 - Y:6 282 733

ALTITUDE DU SOL (m NGF) : 0,58

**FOREUR**: EJM HYDROVAC **TECHNIQUE**: Fouille 10-TP

NIVEAU DE LA NAPPE : 1.6 m - -1.02 m NGF

DESSINE PAR: VDA VERIFIE PAR: ADE REMARQUES:

|                                                                             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | ADE REMARQUES:                                                                                                           |                         |                  |                      |                     |
|-----------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------|----------------------|---------------------|
| COUPE DE L'OUVRAGE  OU DE L'OUVRAGE  Pt. ref.: Sol Z Pt. ref.: 0,58 (m NGF) | NIVEAU NAPPE<br>IMPACT VISUEL | POO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PROFONDEUR (m) | DESCRIPTION                                                                                                              | FORMATION<br>GEOLOGIQUE | ALTITUDE (m NGF) | ECHANTILLON          | VALEUR PID<br>(ppm) |
| 0,5                                                                         |                               | \(\frac{1}{2}\) \(\frac{1}2\) \(\frac{1}{2}\) | 0,4            | Terre végétale limoneuse marron  Argiles limoneuses beiges                                                               |                         | <b>d</b>         | GAL3-5_T10S(0.4-1.1) | 0,0                 |
| <br>1,0<br><br>                                                             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,1            | Argiles gris-vert avec inclusions noires (< 10%) -<br>Absence d'odeur                                                    |                         | -0,5             |                      |                     |
| 1,5<br><br>                                                                 | Ā                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,4            | Argiles plastiques noires avec quelques galets (10%) - Absence d'odeur  Grave argileuse coquillée grise - Présence d'eau |                         | -1,0             | GAL3-5_T10S(1.4-1.6) |                     |
| 2,0                                                                         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2,0            | Grave argileuse grise à beige - Présence d'eau  Fin du sondage à 2,30 mètres.                                            |                         | -1,7             | GAL3-5_T10S(2-2.3)   |                     |
|                                                                             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | -                                                                                                                        |                         |                  |                      |                     |



## Piézomètre- GAL3-5\_MW1

155, Rue Louis de Broglie, 13100 Aix-en-Provence - France Tel : +33 (0)4 42 90 74 96

CLIENT / SITE: Total - RETIA / GAL3-5

PROJET / REF.: Investigations complémentaires / FRTOTMS020-P2

DATE DEBUT: 15/09/2020 08:50:00 DATE FIN: 15/09/2020 15:00:00 COORDONNEES (RGF 93 m): X:803 517 - Y:6 282 753

FOREUR: Environnement Investigations

ALTITUDE DU SOL (m NGF) : 1,63

TECHNIQUE: Sonic 16-SC NIVEAU DE LA NAPPE: 0.6 m - 1.03 m NGF

**DESSINE PAR**: VDA **VERIFIE PAR**: ADE **REMARQUES**: NGF PE = 1,56 mNGF

| PROFONDEUR<br>(m)                                                                                | DE    |     | PE<br>/RAGE<br>Capot hors sol<br>Pt. ref.: Haut<br>capot métal<br>Z Pt. ref.: 1,63<br>(m NGF) | NIVEAU NAPPE | IMPACT VISUEL | 907                                     | PROFONDEUR (m) | DESCRIPTION                                                                                                         | FORMATION<br>GEOLOGIQUE | ALTITUDE (m NGF) | ECHANTILLON         | VALEUR PID<br>(ppm) |
|--------------------------------------------------------------------------------------------------|-------|-----|-----------------------------------------------------------------------------------------------|--------------|---------------|-----------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------|-------------------------|------------------|---------------------|---------------------|
|                                                                                                  | - 2/2 | ¥// | Bentociment                                                                                   |              |               | <u> </u>                                |                | Terre végétale limoneuse marron                                                                                     |                         |                  |                     |                     |
| -                                                                                                | -     |     |                                                                                               | $ $ $\nabla$ |               | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 0,4            | Argiles plastiques marron                                                                                           |                         |                  | GAL3-5_MW1(0.4-0.9) | 0,0                 |
| 1                                                                                                | _     |     | — Orégonite                                                                                   |              |               |                                         | 0,9            | Sables graveleux gris - Odeur d'hydrocarbures -<br>Présence d'eau                                                   |                         | 0,7              | GAL3-5_MW1(0.9-1.5) | 31,0                |
| -<br>-<br>2                                                                                      | _     | _   | — PEHD<br>plein                                                                               |              |               |                                         | 1,5            | Argiles plastiques graveleuses beige-marron                                                                         |                         | -0,2             | GAL3-5_MW1(1.5-1.8) |                     |
| 2<br>-<br>-<br>-<br>3<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |       |     | plein 80/90 mm  Gravette siliceuse 2-4 mm  PEHD crépiné (1 mm) 80/90 mm                       |              |               |                                         | 3,0<br>4,1     | Grave argileuse beige à ocre  Grave à matrice sablo-argileuse beige-ocre  Argiles sableuses beiges - Présence d'eau |                         |                  |                     | 0,0                 |
| -                                                                                                |       |     |                                                                                               | J            |               |                                         | 7,0            | Fin du sondage à 7,00 mètres.                                                                                       |                         |                  | <u> </u>            |                     |
|                                                                                                  |       |     |                                                                                               |              |               |                                         |                |                                                                                                                     |                         |                  |                     |                     |



### Piézomètre- GAL3-5\_MW2

155, Rue Louis de Broglie, 13100 Aix-en-Provence - France Tel : +33 (0)4 42 90 74 96

CLIENT / SITE: Total - RETIA / GAL3-5

PROJET / REF.: Investigations complémentaires / FRTOTMS020-P2

DATE DEBUT: 15/09/2020 15:30:00 DATE FIN: 15/09/2020 18:00:00 COORDONNEES (RGF 93 m): X:803 575 - Y:6 282 734

FOREUR: Environnement Investigations ALTITUDE DU SOL (m NGF): 1,09

TECHNIQUE: Sonic 16-SC NIVEAU DE LA NAPPE: 0.8 m - 0.29 m NGF

**DESSINE PAR**: VDA **VERIFIE PAR**: ADE **REMARQUES**: NGF PE = 1,01 mNGF

| DESS              | INE PA                                                                                 | AR: VDA                                                    |               |    | VERIFIE P      | PAR :       | ADE REMARQUES: NGF PE = 1,01 mNGF                                                                                                |                  |             |                     |     |
|-------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------|---------------|----|----------------|-------------|----------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|---------------------|-----|
| PROFONDEUR<br>(m) | COUPE DE L'OUVRAGE  Capot hors sol Pt. ref.: Haut capot métal Z Pt. ref.: 1,09 (m NGF) |                                                            | IMPACT VISUEL |    | PROFONDEUR (m) | DESCRIPTION | FORMATION<br>GEOLOGIQUE                                                                                                          | ALTITUDE (m NGF) | ECHANTILLON | VALEUR PID<br>(ppm) |     |
|                   |                                                                                        | (m NGF)  — Bentociment  — Orégonite  — PEHD plein 80/90 mm | Z ↓ ↓         | WI |                |             | Argiles plastiques grises  Argiles graveleuses grises  Grave argileuse gris sombre - Présence d'eau  Grave argileuse marron-gris |                  | ALT         | Ü.                  | 0,0 |
| 5                 |                                                                                        | PEHD crépiné (1 mm) 80/90 mm                               |               |    |                | 6,0         | Fin du sondage à 6,00 mètres.                                                                                                    |                  |             |                     |     |



### Piézomètre- GAL3-5\_MW3

155, Rue Louis de Broglie, 13100 Aix-en-Provence - France Tel : +33 (0)4 42 90 74 96

CLIENT / SITE: Total - RETIA / GAL3-5

PROJET / REF.: Investigations complémentaires / FRTOTMS020-P2

DATE DEBUT: 14/09/2020 13:55:00 DATE FIN: 14/09/2020 18:00:00 COORDONNEES (RGF 93 m): X:803 439 - Y:6 282 886 FOREUR: Environnement Investigations

ALTITUDE DU SOL (m NGF) : 2,67

TECHNIQUE: Sonic 16-SC

NIVEAU DE LA NAPPE: 0.9 m - 1.77 m NGF

DESSINE PAR: VDA VERIFIE PAR: ADE **REMARQUES:** NGF PE = 2,64 mNGF

| BESTRIPTION  COUPE Couper for a first of the first state of the first | DES                | DINE PAR : | VDA                                      |              | v          | ERIFIE P | AR.            | ADE REMARQUES: NGF PE = 2,64 mNGF                            |                         |                  |             |                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------|------------------------------------------|--------------|------------|----------|----------------|--------------------------------------------------------------|-------------------------|------------------|-------------|---------------------|
| Orégonite  Orégonite  PEND SIND SIND SIND SIND SIND SIND SIND SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PROFONDEUR<br>(m)  | DE L'OUV   | 'RAGE<br>Capot hors sol<br>Pt_ref : Haut | NIVEAU NAPPE |            |          | PROFONDEUR (m) |                                                              | FORMATION<br>GEOLOGIQUE | ALTITUDE (m NGF) | ECHANTILLON | VALEUR PID<br>(ppm) |
| PEHD piein 8,090 mm  2.5 Grave à matrice limono-argileuse beige à core (galet)  2.6 Grave à matrice limono-argileuse beige à core (galet)  2.7 Grave de plus en plus argileuse beige à core avec zones grises (galet)  3. Grave de plus en plus argileuse beige à core avec zones grises (galet)  4.5 Argiles sableuses beiges à core avec cailloutis  5. Grave à matrice sableuses beiges à core avec cailloutis  6. Grave à matrice sableuses beiges à core avec graviers et galets  7. D. Sables argileux beiges à core avec graviers et galets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | _          | Bentociment                              |              |            |          |                | Terre végétale limoneuse marron avec quelques graviers (10%) |                         |                  |             |                     |
| 2.5 Grave de plus en plus argileuse belge à oure avec zones grises (galet)  4 Gravette silicouse 2-4 mm  PEHD crépiné (1 mm) 60/90 mm  5 Gravette silicouse 2-4 mm  Crépiné (1 mm) 60/90 mm  5 Gravette silicouse 2-4 mm  Crépiné (1 mm) 60/90 mm  Sableuses belges à oure avec caliloutis  Crave à matrice sable-argileuse belge  Grave à matrice sable-argileuse belge  7 Journal of the plus argileuse belge à oure avec caliloutis  Sables argileux belges à oure avec graviers et galets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -<br>-<br>-<br>1   |            | — PEHD                                   | Δ            | <u>. 1</u> |          | 0,6            |                                                              |                         |                  |             |                     |
| crépiné (1 mm) 80/90 mm  Argiles sableuses beiges à ocre avec cailloutis  5  Grave à matrice sablo-argileuse beige  6  Sables argileux beiges à ocre avec graviers et galets  7,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -<br>-<br>-<br>3   |            | siliceuse<br>2-4 mm                      |              | C          |          | 2,5            | Grave de plus en plus argileuse beige à ocre avec zones      |                         |                  |             | 0,0                 |
| Grave à matrice sablo-argileuse beige  6  Sables argileux beiges à ocre avec graviers et galets  7  7,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -<br>-<br>-<br>_ 5 |            | crépiné (1<br>mm)                        |              |            | ·        | 4,5            | Argiles sableuses beiges à ocre avec cailloutis              |                         |                  |             |                     |
| Sables argileux beiges à ocre avec graviers et galets  7,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                  |            |                                          |              |            |          |                | Grave à matrice sablo-argileuse beige                        |                         |                  |             |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |            |                                          |              |            |          | 6,0            |                                                              |                         |                  |             |                     |
| Fin du sondage à 7,00 mètres.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7                  |            |                                          |              |            |          | 7,0            |                                                              |                         |                  |             |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |            |                                          |              |            |          |                | Fin du sondage à 7,00 mètres.                                |                         |                  |             |                     |

Sites du Languedoc – Rapport sur les investigations et les prélèvements libératoires réalisés sur le site de Gallician 3 et 5 (GAL3 et GAL5)

ANNEXE 3
FICHES DE PRELEVEMENT - CAMPAGNES DE NOVEMBRE 2019 ET SEPTEMBRE 2020





Nom du point : GAL3-5\_S0

|                      | ECHANTILLONNAGE       |                      |     |                   |      |  |  |  |  |  |
|----------------------|-----------------------|----------------------|-----|-------------------|------|--|--|--|--|--|
| Nom de l'échantillon | GAL3-5_S0(0-1.5)_2011 | 19                   |     |                   |      |  |  |  |  |  |
| Date/Heure           | 20/11/2019 15:15:00   | Mode d'éch.          | SS  | Type de préleveur | main |  |  |  |  |  |
| Profondeur haute (m) | 0                     | Profondeur basse (m) | 1.5 |                   |      |  |  |  |  |  |
| Remarque             |                       |                      |     |                   |      |  |  |  |  |  |
| Nom de l'échantillon | GAL3-5_S0(0-1.5)_2011 | 19_D                 |     |                   |      |  |  |  |  |  |
| Date/Heure           | 20/11/2019 15:15:00   | Mode d'éch.          | SS  | Type de préleveur | main |  |  |  |  |  |
| Profondeur haute (m) | 0                     | Profondeur basse (m) | 1.5 |                   |      |  |  |  |  |  |
| Remarque             |                       |                      |     |                   |      |  |  |  |  |  |

QSSE Form 009 - Rev F Page 1/18



#### FICHE DE PRELEVEMENT DE SOL

|                           | ECHANTILLONS LIVRES AU LABORATOIRE |                |          |                 |                                     |                        |              |                            |  |  |  |
|---------------------------|------------------------------------|----------------|----------|-----------------|-------------------------------------|------------------------|--------------|----------------------------|--|--|--|
| Nom d'échantillon         | Code barre                         | Type de flacon | Conserv. | Kit<br>méthanol | Analyse                             | Laboratoire            | Date d'envoi | Conditions de<br>transport |  |  |  |
| GAL3-5_S0(0-1.5)_201119   | V7870331H                          | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 25/11/2019   | Glacière                   |  |  |  |
| GAL3-5_S0(0-1.5)_201119   | V7870308L                          | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 25/11/2019   | Glacière                   |  |  |  |
| GAL3-5_S0(0-1.5)_201119_D | V7870043H                          | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 25/11/2019   | Glacière                   |  |  |  |

| OBSERVATIONS / NOTES |
|----------------------|
|                      |
|                      |

QSSE Form 009 - Rev F Page 2/18





Nom du point : GAL3-5\_\$1

|                      |                       | ECHANTILL            | ONNAGE |                   |      |  |
|----------------------|-----------------------|----------------------|--------|-------------------|------|--|
| Nom de l'échantillon | GAL3-5_S1(0-0.3)_2111 | 19                   |        |                   |      |  |
| Date/Heure           | 21/11/2019 11:40:00   | Mode d'éch.          | SS     | Type de préleveur | main |  |
| Profondeur haute (m) | 0                     | Profondeur basse (m) | 0.3    |                   |      |  |
| Remarque             |                       |                      |        |                   |      |  |
| Nom de l'échantillon | GAL3-5_S1(0-0.3)_2111 | 19_D                 |        |                   |      |  |
| Date/Heure           | 21/11/2019 11:40:00   | Mode d'éch.          | SS     | Type de préleveur | main |  |
| Profondeur haute (m) | 0                     | Profondeur basse (m) | 0.3    |                   |      |  |
| Remarque             |                       |                      |        |                   |      |  |
| Nom de l'échantillon | GAL3-5_S1(0.3-1)_2111 | 19                   |        |                   |      |  |
| Date/Heure           | 21/11/2019 11:40:00   | Mode d'éch.          | SS     | Type de préleveur | main |  |
| Profondeur haute (m) | 0.3                   | Profondeur basse (m) | 1      |                   |      |  |
| Remarque             |                       |                      |        |                   |      |  |
| Nom de l'échantillon | GAL3-5_S1(0.3-1)_2111 | 19_D                 |        |                   |      |  |
| Date/Heure           | 21/11/2019 11:40:00   | Mode d'éch.          | SS     | Type de préleveur | main |  |
| Profondeur haute (m) | 0.3                   | Profondeur basse (m) | 1      |                   |      |  |
| Remarque             |                       | ,                    |        |                   |      |  |



#### FICHE DE PRELEVEMENT DE SOL

| ECHANTILLONS LIVRES AU LABORATOIRE |            |                |          |                 |                                     |                        |              |                            |  |
|------------------------------------|------------|----------------|----------|-----------------|-------------------------------------|------------------------|--------------|----------------------------|--|
| Nom d'échantillon                  | Code barre | Type de flacon | Conserv. | Kit<br>méthanol | Analyse                             | Laboratoire            | Date d'envoi | Conditions de<br>transport |  |
| GAL3-5_S1(0.3-1)_211119            | V7871324K  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 25/11/2019   | Glacière                   |  |
| GAL3-5_S1(0.3-1)_211119            | V7871306K  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 25/11/2019   | Glacière                   |  |
| GAL3-5_S1(0-0.3)_211119            | V7871311G  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 25/11/2019   | Glacière                   |  |
| GAL3-5_S1(0-0.3)_211119            | V78712830  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 25/11/2019   | Glacière                   |  |
| GAL3-5_S1(0.3-1)_211119_D          | V78713190  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 25/11/2019   | Glacière                   |  |
| GAL3-5_S1(0-0.3)_211119_D          | V7871322I  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 25/11/2019   | Glacière                   |  |

| OBSERVATIONS / NOTES |
|----------------------|
|                      |
|                      |

QSSE Form 009 - Rev F Page 4/18





Nom du point : GAL3-5\_S2

|                      |                       | ECHANTILL            | ONNAGE |                   |      |  |
|----------------------|-----------------------|----------------------|--------|-------------------|------|--|
| Nom de l'échantillon | GAL3-5_S2(0-0.6)_2111 | 19                   |        |                   |      |  |
| Date/Heure           | 21/11/2019 10:10:00   | Mode d'éch.          | SS     | Type de préleveur | main |  |
| Profondeur haute (m) | 0                     | Profondeur basse (m) | 0.6    |                   |      |  |
| Remarque             |                       | 1                    |        | ,                 |      |  |
| Nom de l'échantillon | GAL3-5_S2(0-0.6)_2111 | 19_D                 |        |                   |      |  |
| Date/Heure           | 21/11/2019 10:10:00   | Mode d'éch.          | SS     | Type de préleveur | main |  |
| Profondeur haute (m) | 0                     | Profondeur basse (m) | 0.6    |                   |      |  |
| Remarque             |                       |                      |        |                   |      |  |
| Nom de l'échantillon | GAL3-5_S2(0.6-1)_2111 | 19                   |        |                   |      |  |
| Date/Heure           | 21/11/2019 10:10:00   | Mode d'éch.          | SS     | Type de préleveur | main |  |
| Profondeur haute (m) | 0.6                   | Profondeur basse (m) | 1      |                   |      |  |
| Remarque             |                       |                      |        |                   |      |  |
| Nom de l'échantillon | GAL3-5_S2(0.6-1)_2111 | 19_D                 |        |                   |      |  |
| Date/Heure           | 21/11/2019 10:10:00   | Mode d'éch.          | SS     | Type de préleveur | main |  |
| Profondeur haute (m) | 0.6                   | Profondeur basse (m) | 1      |                   |      |  |
| Remarque             |                       |                      |        |                   |      |  |



#### FICHE DE PRELEVEMENT DE SOL

| ECHANTILLONS LIVRES AU LABORATOIRE |            |                |          |                 |                                     |                        |              |                            |  |
|------------------------------------|------------|----------------|----------|-----------------|-------------------------------------|------------------------|--------------|----------------------------|--|
| Nom d'échantillon                  | Code barre | Type de flacon | Conserv. | Kit<br>méthanol | Analyse                             | Laboratoire            | Date d'envoi | Conditions de<br>transport |  |
| GAL3-5_S2(0.6-1)_211119            | V78704640  | ALU210         | Aucun    | non             | Pack ISDI, 8 métaux                 | Synlab<br>Laboratories | 25/11/2019   | Glacière                   |  |
| GAL3-5_S2(0.6-1)_211119            | V7870447P  | ALU210         | Aucun    | non             | Pack ISDI, 8 métaux                 | Synlab<br>Laboratories | 25/11/2019   | Glacière                   |  |
| GAL3-5_S2(0-0.6)_211119            | V7870454N  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 25/11/2019   | Glacière                   |  |
| GAL3-5_S2(0-0.6)_211119            | V7870448Q  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 25/11/2019   | Glacière                   |  |
| GAL3-5_S2(0.6-1)_211119_D          | V7870438P  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 25/11/2019   | Glacière                   |  |
| GAL3-5_S2(0-0.6)_211119_D          | V78704370  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 25/11/2019   | Glacière                   |  |

| OBSERVATIONS / NOTES |  |
|----------------------|--|
|                      |  |
|                      |  |

QSSE Form 009 - Rev F Page 6/18





Nom du point : GAL3-5\_S2bis

| ECHANTILLONNAGE      |                                |                            |     |                   |      |  |
|----------------------|--------------------------------|----------------------------|-----|-------------------|------|--|
| Nom de l'échantillon | GAL3-5_S2bis(0-1.1)_21         | GAL3-5_S2bis(0-1.1)_211119 |     |                   |      |  |
| Date/Heure           | 21/11/2019 11:00:00            | Mode d'éch.                | SS  | Type de préleveur | main |  |
| Profondeur haute (m) | 0                              | Profondeur basse (m)       | 1.1 |                   |      |  |
| Remarque             |                                |                            |     | ,                 |      |  |
| Nom de l'échantillon | GAL3-5_S2bis(0-1.1)_211119_D   |                            |     |                   |      |  |
| Date/Heure           | 21/11/2019 11:00:00            | Mode d'éch.                | SS  | Type de préleveur | main |  |
| Profondeur haute (m) | 0                              | Profondeur basse (m)       | 1.1 |                   |      |  |
| Remarque             |                                |                            |     |                   |      |  |
| Nom de l'échantillon | GAL3-5_S2bis(1.1-1.3)_211119   |                            |     |                   |      |  |
| Date/Heure           | 21/11/2019 11:00:00            | Mode d'éch.                | SS  | Type de préleveur | main |  |
| Profondeur haute (m) | 1.1                            | Profondeur basse (m)       | 1.3 |                   |      |  |
| Remarque             |                                |                            |     |                   |      |  |
| Nom de l'échantillon | GAL3-5_S2bis(1.1-1.3)_211119_D |                            |     |                   |      |  |
| Date/Heure           | 21/11/2019 11:00:00            | Mode d'éch.                | SS  | Type de préleveur | main |  |
| Profondeur haute (m) | 1.1                            | Profondeur basse (m)       | 1.3 | ,                 |      |  |
| Remarque             |                                |                            |     |                   |      |  |

QSSE Form 009 - Rev F Page 7/18



#### FICHE DE PRELEVEMENT DE SOL

| ECHANTILLONS LIVRES AU LABORATOIRE |            |                |          |                 |                                     |                        |              |                            |
|------------------------------------|------------|----------------|----------|-----------------|-------------------------------------|------------------------|--------------|----------------------------|
| Nom d'échantillon                  | Code barre | Type de flacon | Conserv. | Kit<br>méthanol | Analyse                             | Laboratoire            | Date d'envoi | Conditions de<br>transport |
| GAL3-5_S2bis(0-1.1)_211119         | V7870465P  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 25/11/2019   | Glacière                   |
| GAL3-5_S2bis(0-1.1)_211119         | V7870446O  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 25/11/2019   | Glacière                   |
| GAL3-5_S2bis(1.1-1.3)_211119       | V7870471M  | ALU210         | Aucun    | non             | Pack ISDI, 8 métaux                 | Synlab<br>Laboratories | 25/11/2019   | Glacière                   |
| GAL3-5_S2bis(1.1-1.3)_211119       | V7870450J  | ALU210         | Aucun    | non             | Pack ISDI, 8 métaux                 | Synlab<br>Laboratories | 25/11/2019   | Glacière                   |
| GAL3-5_S2bis(0-<br>1.1)_211119_D   | V7870460K  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 25/11/2019   | Glacière                   |
| GAL3-5_S2bis(1.1-<br>1.3)_211119_D | V7870452L  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 25/11/2019   | Glacière                   |

| OBSERVATIONS / NOTES |
|----------------------|
|                      |
|                      |
|                      |

QSSE Form 009 - Rev F Page 8/18





Nom du point : GAL3-5\_S3

| ECHANTILLONNAGE      |                                        |                      |    |                   |      |
|----------------------|----------------------------------------|----------------------|----|-------------------|------|
| Nom de l'échantillon | GAL3-5_S3(0-1)_211119                  |                      |    |                   |      |
| Date/Heure           | 21/11/2019 09:40:00 <b>Mode d'éch.</b> |                      | SS | Type de préleveur | main |
| Profondeur haute (m) | ) 0 Profondeur basse (m)               |                      | 1  |                   |      |
| Remarque             |                                        |                      |    |                   |      |
| Nom de l'échantillon | GAL3-5_S3(0-1)_211119_D                |                      |    |                   |      |
| Date/Heure           | 21/11/2019 09:40:00                    | Mode d'éch.          | SS | Type de préleveur | main |
| Profondeur haute (m) | 0                                      | Profondeur basse (m) | 1  |                   |      |
| Remarque             |                                        |                      |    |                   |      |



#### FICHE DE PRELEVEMENT DE SOL

| ECHANTILLONS LIVRES AU LABORATOIRE |            |                |          |                 |                                     |                        |              |                            |
|------------------------------------|------------|----------------|----------|-----------------|-------------------------------------|------------------------|--------------|----------------------------|
| Nom d'échantillon                  | Code barre | Type de flacon | Conserv. | Kit<br>méthanol | Analyse                             | Laboratoire            | Date d'envoi | Conditions de<br>transport |
| GAL3-5_S3(0-1)_211119              | V78704550  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 25/11/2019   | Glacière                   |
| GAL3-5_S3(0-1)_211119              | V7870439Q  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 25/11/2019   | Glacière                   |
| GAL3-5_S3(0-1)_211119_D            | V7870378S  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 25/11/2019   | Glacière                   |

| OBSERVATIONS / NOTES |
|----------------------|
|                      |
|                      |
|                      |
|                      |

QSSE Form 009 - Rev F Page 10/18





Nom du point : GAL3-5\_S4

| ECHANTILLONNAGE      |                       |                      |    |                   |      |  |  |
|----------------------|-----------------------|----------------------|----|-------------------|------|--|--|
| Nom de l'échantillon | GAL3-5_S4(0-3)_211119 | 9                    |    |                   |      |  |  |
| Date/Heure           | 21/11/2019 08:25:00   | Mode d'éch.          | SS | Type de préleveur | main |  |  |
| Profondeur haute (m) | 0                     | Profondeur basse (m) | 3  |                   |      |  |  |
| Remarque             |                       |                      |    |                   |      |  |  |
| Nom de l'échantillon | GAL3-5_S4(0-3)_211119 | 9_D                  |    |                   |      |  |  |
| Date/Heure           | 21/11/2019 08:25:00   | Mode d'éch.          | SS | Type de préleveur | main |  |  |
| Profondeur haute (m) | 0                     | Profondeur basse (m) | 3  |                   |      |  |  |
| Remarque             |                       |                      |    |                   |      |  |  |

QSSE Form 009 - Rev F Page 11/18



| ECHANTILLONS LIVRES AU LABORATOIRE |            |                |          |                 |                                     |                        |              |                            |
|------------------------------------|------------|----------------|----------|-----------------|-------------------------------------|------------------------|--------------|----------------------------|
| Nom d'échantillon                  | Code barre | Type de flacon | Conserv. | Kit<br>méthanol | Analyse                             | Laboratoire            | Date d'envoi | Conditions de<br>transport |
| GAL3-5_S4(0-3)_211119              | V7870466Q  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 25/11/2019   | Glacière                   |
| GAL3-5_S4(0-3)_211119              | V7870451K  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 25/11/2019   | Glacière                   |
| GAL3-5_S4(0-3)_211119_D            | V7870444M  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 25/11/2019   | Glacière                   |

| OBSERVATIONS / NOTES |
|----------------------|
|                      |
|                      |

QSSE Form 009 - Rev F Page 12/18





Nom du point : GAL3-5\_S5

|                      |                       | ECHANTILL            | ONNAGE |                   |      |
|----------------------|-----------------------|----------------------|--------|-------------------|------|
| Nom de l'échantillon | GAL3-5_S5(0-0.4)_2011 | 19                   |        |                   |      |
| Date/Heure           | 20/11/2019 16:30:00   | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0                     | Profondeur basse (m) | 0.4    |                   |      |
| Remarque             |                       | 1                    |        |                   |      |
| Nom de l'échantillon | GAL3-5_S5(0-0.4)_2011 | 19_D                 |        |                   |      |
| Date/Heure           | 20/11/2019 16:30:00   | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0                     | Profondeur basse (m) | 0.4    |                   |      |
| Remarque             |                       |                      |        |                   |      |
| Nom de l'échantillon | GAL3-5_S5(0.4-0.9)_20 | 1119                 |        |                   |      |
| Date/Heure           | 20/11/2019 16:30:00   | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0.4                   | Profondeur basse (m) | 0.9    |                   |      |
| Remarque             |                       |                      |        |                   |      |
| Nom de l'échantillon | GAL3-5_S5(0.4-0.9)_20 | 1119_D               |        |                   |      |
| Date/Heure           | 20/11/2019 16:30:00   | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0.4                   | Profondeur basse (m) | 0.9    |                   |      |
| Remarque             |                       |                      |        |                   |      |

QSSE Form 009 - Rev F Page 13/18



| ECHANTILLONS LIVRES AU LABORATOIRE |            |                |          |                 |                                     |                        |              |                            |
|------------------------------------|------------|----------------|----------|-----------------|-------------------------------------|------------------------|--------------|----------------------------|
| Nom d'échantillon                  | Code barre | Type de flacon | Conserv. | Kit<br>méthanol | Analyse                             | Laboratoire            | Date d'envoi | Conditions de<br>transport |
| GAL3-5_S5(0.4-0.9)_201119          | V7870429P  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 25/11/2019   | Glacière                   |
| GAL3-5_S5(0.4-0.9)_201119          | V7870317L  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 25/11/2019   | Glacière                   |
| GAL3-5_S5(0-0.4)_201119            | V7870330G  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 25/11/2019   | Glacière                   |
| GAL3-5_S5(0-0.4)_201119            | V7870327M  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 25/11/2019   | Glacière                   |
| GAL3-5_S5(0.4-0.9)_201119_D        | V7870442K  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 25/11/2019   | Glacière                   |
| GAL3-5_S5(0-0.4)_201119_D          | V7870307K  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 25/11/2019   | Glacière                   |

| OBSERVATIONS / NOTES |  |
|----------------------|--|
|                      |  |
|                      |  |

QSSE Form 009 - Rev F Page 14/18





Nom du point : GAL3-5\_S6

|                      | ECHANTILLONNAGE       |                      |     |                   |      |  |  |  |
|----------------------|-----------------------|----------------------|-----|-------------------|------|--|--|--|
| Nom de l'échantillon | GAL3-5_S6(0-1.5)_2011 | 19                   |     |                   |      |  |  |  |
| Date/Heure           | 20/11/2019 15:50:00   | Mode d'éch.          | SS  | Type de préleveur | main |  |  |  |
| Profondeur haute (m) | 0                     | Profondeur basse (m) | 1.5 |                   |      |  |  |  |
| Remarque             |                       |                      |     |                   |      |  |  |  |
| Nom de l'échantillon | GAL3-5_S6(0-1.5)_2011 | 19_D                 |     |                   |      |  |  |  |
| Date/Heure           | 20/11/2019 15:50:00   | Mode d'éch.          | SS  | Type de préleveur | main |  |  |  |
| Profondeur haute (m) | 0                     | Profondeur basse (m) | 1.5 |                   |      |  |  |  |
| Remarque             |                       |                      |     |                   |      |  |  |  |

QSSE Form 009 - Rev F Page 15/18



| ECHANTILLONS LIVRES AU LABORATOIRE |            |                |          |                 |                                     |                        |              |                            |
|------------------------------------|------------|----------------|----------|-----------------|-------------------------------------|------------------------|--------------|----------------------------|
| Nom d'échantillon                  | Code barre | Type de flacon | Conserv. | Kit<br>méthanol | Analyse                             | Laboratoire            | Date d'envoi | Conditions de<br>transport |
| GAL3-5_S6(0-1.5)_201119            | V7870325K  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 25/11/2019   | Glacière                   |
| GAL3-5_S6(0-1.5)_201119            | V7870311F  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 25/11/2019   | Glacière                   |
| GAL3-5_S6(0-1.5)_201119_D          | V7870326L  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 25/11/2019   | Glacière                   |

| OBSERVATIONS / NOTES |  |
|----------------------|--|
|                      |  |
|                      |  |

QSSE Form 009 - Rev F Page 16/18





Nom du point : GAL3-5\_S8

|                      |                       | ECHANTILLO           | NNAGE |                   |      |
|----------------------|-----------------------|----------------------|-------|-------------------|------|
| Nom de l'échantillon | GAL3-5_S8(0-0.7)_2111 | 19                   |       |                   |      |
| Date/Heure           | 21/11/2019 14:40:00   | Mode d'éch.          | SS    | Type de préleveur | main |
| Profondeur haute (m) | 0                     | Profondeur basse (m) | 0.7   |                   |      |
| Remarque             |                       | ,                    |       | ,                 |      |
| Nom de l'échantillon | GAL3-5_S8(0-0.7)_2111 | 19_D                 |       |                   |      |
| Date/Heure           | 21/11/2019 14:40:00   | Mode d'éch.          | SS    | Type de préleveur | main |
| Profondeur haute (m) | 0                     | Profondeur basse (m) | 0.7   |                   |      |
| Remarque             |                       |                      |       |                   |      |
| Nom de l'échantillon | GAL3-5_S8(0.7-1.5)_21 | 1119                 |       |                   |      |
| Date/Heure           | 21/11/2019 14:40:00   | Mode d'éch.          | SS    | Type de préleveur | main |
| Profondeur haute (m) | 0.7                   | Profondeur basse (m) | 1.5   |                   |      |
| Remarque             |                       | ,                    |       |                   |      |
| Nom de l'échantillon | GAL3-5_S8(0.7-1.5)_21 | 1119_D               |       |                   |      |
| Date/Heure           | 21/11/2019 14:40:00   | Mode d'éch.          | SS    | Type de préleveur | main |
| Profondeur haute (m) | 0.7                   | Profondeur basse (m) | 1.5   |                   |      |
| Remarque             |                       |                      |       | 1                 |      |

QSSE Form 009 - Rev F Page 17/18



| ECHANTILLONS LIVRES AU LABORATOIRE |            |                |          |                 |                                     |                        |              |                            |
|------------------------------------|------------|----------------|----------|-----------------|-------------------------------------|------------------------|--------------|----------------------------|
| Nom d'échantillon                  | Code barre | Type de flacon | Conserv. | Kit<br>méthanol | Analyse                             | Laboratoire            | Date d'envoi | Conditions de<br>transport |
| GAL3-5_S8(0.7-1.5)_211119          | V7871273N  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 25/11/2019   | Glacière                   |
| GAL3-5_S8(0.7-1.5)_211119          | V7870921M  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 25/11/2019   | Glacière                   |
| GAL3-5_S8(0-0.7)_211119            | V7871316L  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 25/11/2019   | Glacière                   |
| GAL3-5_S8(0-0.7)_211119            | V7871315K  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 25/11/2019   | Glacière                   |
| GAL3-5_S8(0.7-1.5)_211119_D        | V7871225K  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 25/11/2019   | Glacière                   |
| GAL3-5_S8(0-0.7)_211119_D          | V7871318N  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 25/11/2019   | Glacière                   |

| OBSERVATIONS / NOTES |
|----------------------|
|                      |
|                      |

QSSE Form 009 - Rev F Page 18/18





Nom du point : GAL3-5\_MW1

|                      |                       | ECHANTILL            | ONNAGE |                   |      |
|----------------------|-----------------------|----------------------|--------|-------------------|------|
| Nom de l'échantillon | GAL3-5_MW1(0.4-0.9)_2 | 200915               |        |                   |      |
| Date/Heure           | 15/09/2020 14:50:00   | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0.4                   | Profondeur basse (m) | 0.9    |                   |      |
| Remarque             |                       |                      |        |                   |      |
| Nom de l'échantillon | GAL3-5_MW1(0.4-0.9)_2 | 200915_D             |        |                   |      |
| Date/Heure           | 15/09/2020 14:50:00   | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0.4                   | Profondeur basse (m) | 0.9    |                   |      |
| Remarque             |                       | -                    |        |                   |      |
| Nom de l'échantillon | GAL3-5_MW1(0.9-1.5)_2 | 200915               |        |                   |      |
| Date/Heure           | 15/09/2020 14:51:00   | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0.9                   | Profondeur basse (m) | 1.5    |                   |      |
| Remarque             |                       |                      |        |                   |      |
| Nom de l'échantillon | GAL3-5_MW1(0.9-1.5)_2 | 200915_D             |        |                   |      |
| Date/Heure           | 15/09/2020 14:51:00   | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0.9                   | Profondeur basse (m) | 1.5    |                   |      |
| Remarque             |                       |                      |        |                   |      |
| Nom de l'échantillon | GAL3-5_MW1(1.5-1.8)_2 | 200915               |        |                   |      |
| Date/Heure           | 15/09/2020 14:52:00   | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 1.5                   | Profondeur basse (m) | 1.8    |                   |      |
| Remarque             |                       |                      |        |                   |      |
| Nom de l'échantillon | GAL3-5_MW1(1.5-1.8)_2 | 200915_D             |        |                   |      |
| Date/Heure           | 15/09/2020 14:52:00   | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 1.5                   | Profondeur basse (m) | 1.8    |                   |      |
| Remarque             |                       |                      |        |                   |      |

QSSE Form 009 - Rev F Page 1/46





|                                  | ECHANTILLONS LIVRES AU LABORATOIRE |                |          |                 |                                     |                        |              |                            |
|----------------------------------|------------------------------------|----------------|----------|-----------------|-------------------------------------|------------------------|--------------|----------------------------|
| Nom d'échantillon                | Code barre                         | Type de flacon | Conserv. | Kit<br>méthanol | Analyse                             | Laboratoire            | Date d'envoi | Conditions de<br>transport |
| GAL3-5_MW1(0.4-0.9)_200915       | V2111153                           | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_MW1(0.4-0.9)_200915       | V2111148                           | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_MW1(0.9-1.5)_200915       | V2111160à                          | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_MW1(0.9-1.5)_200915       | V21111442                          | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_MW1(1.5-1.8)_200915       | V2111150                           | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_MW1(1.5-1.8)_200915       | V2111146                           | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_MW1(0.4-<br>0.9)_200915_D | V21111510                          | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_MW1(0.9-<br>1.5)_200915_D | V21111565                          | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_MW1(1.5-<br>1.8)_200915_D | V21111543                          | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |

| OBSERVATIONS / NOTES |
|----------------------|
|                      |
|                      |
|                      |
|                      |

QSSE Form 009 - Rev F Page 2/46





Nom du point : GAL3-5\_\$10

|                      | ECHANTILLONNAGE       |                         |     |                   |      |  |  |  |
|----------------------|-----------------------|-------------------------|-----|-------------------|------|--|--|--|
| Nom de l'échantillon | GAL3-5_S10(0-1.2)_200 | AL3-5_S10(0-1.2)_200918 |     |                   |      |  |  |  |
| Date/Heure           | 18/09/2020 10:10:00   | Mode d'éch.             | SS  | Type de préleveur | main |  |  |  |
| Profondeur haute (m) | 0                     | Profondeur basse (m)    | 1.2 |                   |      |  |  |  |
| Remarque             |                       |                         |     |                   |      |  |  |  |
| Nom de l'échantillon | GAL3-5_S10(0-1.2)_200 | 918_D                   |     |                   |      |  |  |  |
| Date/Heure           | 18/09/2020 10:10:00   | Mode d'éch.             | SS  | Type de préleveur | main |  |  |  |
| Profondeur haute (m) | 0                     | Profondeur basse (m)    | 1.2 |                   |      |  |  |  |
| Remarque             |                       |                         |     |                   |      |  |  |  |

QSSE Form 009 - Rev F Page 3/46



| ECHANTILLONS LIVRES AU LABORATOIRE |            |                |          |                 |            |                        |              |                            |
|------------------------------------|------------|----------------|----------|-----------------|------------|------------------------|--------------|----------------------------|
| Nom d'échantillon                  | Code barre | Type de flacon | Conserv. | Kit<br>méthanol | Analyse    | Laboratoire            | Date d'envoi | Conditions de<br>transport |
| GAL3-5_S10(0-1.2)_200918           | V21112083  | ALU210         | Aucun    | non             | НАР        | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_S10(0-1.2)_200918           | V2111204%  | ALU210         | Aucun    | non             | НАР        | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_S10(0-1.2)_200918_D         | V2111200   | ALU210         | Aucun    | non             | En attente | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |

| OBSE | RVATIONS / NOTES |
|------|------------------|
|      |                  |
|      |                  |

QSSE Form 009 - Rev F Page 4/46





Nom du point : GAL3-5\_S11

|                      |                        | ECHANTILL            | ONNAGE |                   |      |
|----------------------|------------------------|----------------------|--------|-------------------|------|
| Nom de l'échantillon | GAL3-5_S11(0.3-0.8)_20 | 00918                |        |                   |      |
| Date/Heure           | 18/09/2020 09:25:00    | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0.3                    | Profondeur basse (m) | 0.8    |                   |      |
| Remarque             |                        |                      |        |                   |      |
| Nom de l'échantillon | GAL3-5_S11(0.3-0.8)_20 | 00918_D              |        |                   |      |
| Date/Heure           | 18/09/2020 09:25:00    | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0.3                    | Profondeur basse (m) | 0.8    |                   |      |
| Remarque             |                        |                      |        |                   |      |
| Nom de l'échantillon | GAL3-5_S11(1.3-1.5)_20 | 00918                |        |                   |      |
| Date/Heure           | 18/09/2020 09:26:00    | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 1.3                    | Profondeur basse (m) | 1.5    |                   |      |
| Remarque             |                        |                      |        |                   |      |
| Nom de l'échantillon | GAL3-5_S11(1.3-1.5)_20 | 00918_D              |        |                   |      |
| Date/Heure           | 18/09/2020 09:26:00    | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 1.3                    | Profondeur basse (m) | 1.5    |                   |      |
| Remarque             |                        | ·                    |        |                   |      |

QSSE Form 009 - Rev F Page 5/46



| ECHANTILLONS LIVRES AU LABORATOIRE |            |                |          |                 |            |                        |              |                         |
|------------------------------------|------------|----------------|----------|-----------------|------------|------------------------|--------------|-------------------------|
| Nom d'échantillon                  | Code barre | Type de flacon | Conserv. | Kit<br>méthanol | Analyse    | Laboratoire            | Date d'envoi | Conditions de transport |
| GAL3-5_S11(0.3-0.8)_200918         | V2111210\$ | ALU210         | Aucun    | non             | НАР        | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée  |
| GAL3-5_S11(1.3-1.5)_200918         | V21112094  | ALU210         | Aucun    | non             | НАР        | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée  |
| GAL3-5_S11(1.3-1.5)_200918         | V2111203+  | ALU210         | Aucun    | non             | НАР        | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée  |
| GAL3-5_S11(0.3-<br>0.8)_200918_D   | V2111211/  | ALU210         | Aucun    | non             | En attente | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée  |
| GAL3-5_S11(1.3-<br>1.5)_200918_D   | V21112050  | ALU210         | Aucun    | non             | En attente | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée  |

| OBSERVATIONS / NOTES |
|----------------------|
|                      |
|                      |
|                      |

QSSE Form 009 - Rev F Page 6/46





Nom du point : GAL3-5\_\$12

|                      |                       | ECHANTILL            | ONNAGE |                   |      |
|----------------------|-----------------------|----------------------|--------|-------------------|------|
| Nom de l'échantillon | GAL3-5_S12(0.4-1)_200 | 918                  |        |                   |      |
| Date/Heure           | 18/09/2020 08:45:00   | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0.4                   | Profondeur basse (m) | 1      |                   |      |
| Remarque             |                       |                      |        |                   |      |
| Nom de l'échantillon | GAL3-5_S12(0.4-1)_200 | 918_D                |        |                   |      |
| Date/Heure           | 18/09/2020 08:45:00   | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0.4                   | Profondeur basse (m) | 1      |                   |      |
| Remarque             |                       |                      |        |                   |      |
| Nom de l'échantillon | GAL3-5_S12(1-1.3)_200 | 918                  |        |                   |      |
| Date/Heure           | 18/09/2020 08:46:00   | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 1                     | Profondeur basse (m) | 1.3    |                   |      |
| Remarque             |                       |                      |        |                   |      |
| Nom de l'échantillon | GAL3-5_S12(1-1.3)_200 | 918_D                |        |                   |      |
| Date/Heure           | 18/09/2020 08:46:00   | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 1                     | Profondeur basse (m) | 1.3    |                   |      |
| Remarque             |                       | <u> </u>             |        | ·                 |      |

QSSE Form 009 - Rev F Page 7/46



| ECHANTILLONS LIVRES AU LABORATOIRE |            |                |          |                 |            |                        |              |                         |
|------------------------------------|------------|----------------|----------|-----------------|------------|------------------------|--------------|-------------------------|
| Nom d'échantillon                  | Code barre | Type de flacon | Conserv. | Kit<br>méthanol | Analyse    | Laboratoire            | Date d'envoi | Conditions de transport |
| GAL3-5_S12(0.4-1)_200918           | V21112724  | ALU210         | Aucun    | non             | НАР        | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée  |
| GAL3-5_S12(1-1.3)_200918           | V2111288B  | ALU210         | Aucun    | non             | НАР        | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée  |
| GAL3-5_S12(1-1.3)_200918           | V21112072  | ALU210         | Aucun    | non             | НАР        | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée  |
| GAL3-5_S12(0.4-1)_200918_D         | V21112061  | ALU210         | Aucun    | non             | En attente | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée  |
| GAL3-5_S12(1-1.3)_200918_D         | V21112768  | ALU210         | Aucun    | non             | En attente | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée  |

| OBSERVATIONS / NOTES |  |
|----------------------|--|
|                      |  |
|                      |  |

QSSE Form 009 - Rev F Page 8/46





Nom du point : GAL3-5\_\$13

|                      |                        | ECHANTILL            | ONNAGE |                   |      |
|----------------------|------------------------|----------------------|--------|-------------------|------|
| Nom de l'échantillon | GAL3-5_S13(0.1-0.5)_20 | 00918                |        |                   |      |
| Date/Heure           | 18/09/2020 11:00:00    | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0.1                    | Profondeur basse (m) | 0.5    |                   |      |
| Remarque             |                        |                      |        | ,                 |      |
| Nom de l'échantillon | GAL3-5_S13(0.1-0.5)_20 | 00918_D              |        |                   |      |
| Date/Heure           | 18/09/2020 11:00:00    | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0.1                    | Profondeur basse (m) | 0.5    |                   |      |
| Remarque             |                        |                      |        | ,                 |      |
| Nom de l'échantillon | GAL3-5_S13(0.5-1)_200  | 918                  |        |                   |      |
| Date/Heure           | 18/09/2020 11:01:00    | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0.5                    | Profondeur basse (m) | 1      |                   |      |
| Remarque             |                        |                      |        |                   |      |
| Nom de l'échantillon | GAL3-5_S13(0.5-1)_200  | 918_D                |        |                   |      |
| Date/Heure           | 18/09/2020 11:01:00    | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0.5                    | Profondeur basse (m) | 1      |                   |      |
| Remarque             |                        |                      |        |                   |      |



|                                  | ECHANTILLONS LIVRES AU LABORATOIRE |                |          |                 |            |                        |              |                         |
|----------------------------------|------------------------------------|----------------|----------|-----------------|------------|------------------------|--------------|-------------------------|
| Nom d'échantillon                | Code barre                         | Type de flacon | Conserv. | Kit<br>méthanol | Analyse    | Laboratoire            | Date d'envoi | Conditions de transport |
| GAL3-5_S13(0.1-0.5)_200918       | V2111201\$                         | ALU210         | Aucun    | non             | НАР        | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée  |
| GAL3-5_S13(0.1-0.5)_200918       | V2111179A                          | ALU210         | Aucun    | non             | НАР        | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée  |
| GAL3-5_S13(0.5-1)_200918         | V21111936                          | ALU210         | Aucun    | non             | НАР        | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée  |
| GAL3-5_S13(0.1-<br>0.5)_200918_D | V2111198B                          | ALU210         | Aucun    | non             | En attente | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée  |
| GAL3-5_S13(0.5-1)_200918_D       | V21111969                          | ALU210         | Aucun    | non             | En attente | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée  |

| OBSERVATIONS / NOTES |
|----------------------|
|                      |
|                      |

QSSE Form 009 - Rev F Page 10/46





Nom du point : GAL3-5\_\$14

|                      |                       | ECHANTILLO           | ONNAGE |                   |      |
|----------------------|-----------------------|----------------------|--------|-------------------|------|
| Nom de l'échantillon | GAL3-5_S14(0-0.3)_200 | 916                  |        |                   |      |
| Date/Heure           | 16/09/2020 14:40:00   | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0                     | Profondeur basse (m) | 0.3    |                   |      |
| Remarque             |                       |                      |        |                   |      |
| Nom de l'échantillon | GAL3-5_S14(0-0.3)_200 | 916_D                |        |                   |      |
| Date/Heure           | 16/09/2020 14:40:00   | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0                     | Profondeur basse (m) | 0.3    |                   |      |
| Remarque             |                       |                      |        |                   |      |
| Nom de l'échantillon | GAL3-5_S14(0.3-1)_200 | 916                  |        |                   |      |
| Date/Heure           | 16/09/2020 14:41:00   | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0.3                   | Profondeur basse (m) | 1      |                   |      |
| Remarque             |                       |                      |        |                   |      |
| Nom de l'échantillon | GAL3-5_S14(0.3-1)_200 | 916_D                |        |                   |      |
| Date/Heure           | 16/09/2020 14:41:00   | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0.3                   | Profondeur basse (m) | 1      |                   |      |
| Remarque             |                       |                      |        |                   |      |

QSSE Form 009 - Rev F Page 11/46



| ECHANTILLONS LIVRES AU LABORATOIRE |            |                |          |                 |                                     |                        |              |                            |
|------------------------------------|------------|----------------|----------|-----------------|-------------------------------------|------------------------|--------------|----------------------------|
| Nom d'échantillon                  | Code barre | Type de flacon | Conserv. | Kit<br>méthanol | Analyse                             | Laboratoire            | Date d'envoi | Conditions de<br>transport |
| GAL3-5_S14(0.3-1)_200916           | V7967874-  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_S14(0.3-1)_200916           | V7967855Z  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_S14(0-0.3)_200916           | V7828808T  | ALU210         | Aucun    | non             | HCT C10-C40                         | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_S14(0-0.3)_200916           | V7781506M  | ALU210         | Aucun    | non             | HCT C10-C40                         | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_S14(0.3-1)_200916_D         | V7955324N  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_S14(0-0.3)_200916_D         | V7967871X  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |

| OBSERVATIONS / NOTES |
|----------------------|
|                      |
|                      |

QSSE Form 009 - Rev F Page 12/46





Nom du point : GAL3-5\_\$15

|                      |                        | ECHANTILL                             | ONNAGE |                   |      |
|----------------------|------------------------|---------------------------------------|--------|-------------------|------|
| Nom de l'échantillon | GAL3-5_S15(0.8-1.1)_20 | 00917                                 |        |                   |      |
| Date/Heure           | 17/09/2020 15:50:00    | Mode d'éch.                           | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0.8                    | Profondeur basse (m)                  | 1.1    |                   |      |
| Remarque             |                        |                                       |        | ,                 |      |
| Nom de l'échantillon | GAL3-5_S15(0.8-1.1)_20 | 00917_D                               |        |                   |      |
| Date/Heure           | 17/09/2020 15:50:00    | Mode d'éch.                           | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0.8                    | Profondeur basse (m)                  | 1.1    | '                 |      |
| Remarque             |                        |                                       |        |                   |      |
| Nom de l'échantillon | GAL3-5_S15(1.6-2.2)_20 | 00917                                 |        |                   |      |
| Date/Heure           | 17/09/2020 15:51:00    | Mode d'éch.                           | SS     | Type de préleveur | main |
| Profondeur haute (m) | 1.6                    | Profondeur basse (m)                  | 2.2    | '                 |      |
| Remarque             |                        |                                       |        |                   |      |
| Nom de l'échantillon | GAL3-5_S15(1.6-2.2)_20 | 00917_D                               |        |                   |      |
| Date/Heure           | 17/09/2020 15:51:00    | Mode d'éch.                           | SS     | Type de préleveur | main |
| Profondeur haute (m) | 1.6                    | Profondeur basse (m)                  | 2.2    |                   |      |
| Remarque             |                        |                                       |        |                   |      |
| Nom de l'échantillon | GAL3-5_S15(2.2-2.4)_20 | 00917                                 |        |                   |      |
| Date/Heure           | 17/09/2020 15:52:00    | Mode d'éch.                           | SS     | Type de préleveur | main |
| Profondeur haute (m) | 2.2                    | Profondeur basse (m)                  | 2.4    |                   |      |
| Remarque             |                        |                                       |        |                   |      |
| Nom de l'échantillon | GAL3-5_S15(2.2-2.4)_20 | 00917_D                               |        |                   |      |
| Date/Heure           | 17/09/2020 15:52:00    | Mode d'éch.                           | SS     | Type de préleveur | main |
| Profondeur haute (m) | 2.2                    | Profondeur basse (m)                  | 2.4    |                   |      |
| Remarque             |                        | · · · · · · · · · · · · · · · · · · · |        |                   |      |

QSSE Form 009 - Rev F Page 13/46



| ECHANTILLONS LIVRES AU LABORATOIRE |            |                |          |                 |                                     |                        |              |                            |
|------------------------------------|------------|----------------|----------|-----------------|-------------------------------------|------------------------|--------------|----------------------------|
| Nom d'échantillon                  | Code barre | Type de flacon | Conserv. | Kit<br>méthanol | Analyse                             | Laboratoire            | Date d'envoi | Conditions de<br>transport |
| GAL3-5_S15(0.8-1.1)_200917         | V21111835  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_S15(1.6-2.2)_200917         | V21111824  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_S15(1.6-2.2)_200917         | V21111587  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_S15(2.2-2.4)_200917         | V21111857  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_S15(0.8-<br>1.1)_200917_D   | V2111131+  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_S15(1.6-<br>2.2)_200917_D   | V21111712  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_S15(2.2-<br>2.4)_200917_D   | V21111240  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |

| OBSERVATIONS / NOTES |
|----------------------|
|                      |
|                      |
|                      |
|                      |

QSSE Form 009 - Rev F Page 14/46



Nom du point : GAL3-5\_T1

|                      |                        | ECHANTILL            | ONNAGE |                   |      |
|----------------------|------------------------|----------------------|--------|-------------------|------|
| Nom de l'échantillon | GAL3-5_T1N(0.9-1.2)_20 | 00921                |        |                   |      |
| Date/Heure           | 21/09/2020 10:35:00    | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0.9                    | Profondeur basse (m) | 1.2    |                   |      |
| Remarque             |                        |                      |        |                   |      |
| Nom de l'échantillon | GAL3-5_T1N(0.9-1.2)_20 | 00921_D              |        |                   |      |
| Date/Heure           | 21/09/2020 10:35:00    | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0.9                    | Profondeur basse (m) | 1.2    |                   |      |
| Remarque             |                        |                      |        |                   |      |
| Nom de l'échantillon | GAL3-5_T1S(0.4-0.6)_20 | 00921                |        |                   |      |
| Date/Heure           | 21/09/2020 10:36:00    | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0.4                    | Profondeur basse (m) | 0.6    |                   |      |
| Remarque             |                        |                      |        | ,                 |      |
| Nom de l'échantillon | GAL3-5_T1S(0.4-0.6)_20 | 00921_D              |        |                   |      |
| Date/Heure           | 21/09/2020 10:36:00    | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0.4                    | Profondeur basse (m) | 0.6    |                   |      |
| Remarque             |                        |                      |        | ,                 |      |
| Nom de l'échantillon | GAL3-5_T1S(0.6-0.9)_20 | 00921                |        |                   |      |
| Date/Heure           | 21/09/2020 10:37:00    | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0.6                    | Profondeur basse (m) | 0.9    |                   |      |
| Remarque             |                        |                      |        |                   |      |
| Nom de l'échantillon | GAL3-5_T1S(0.6-0.9)_20 | 00921_D              |        |                   |      |
| Date/Heure           | 21/09/2020 10:37:00    | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0.6                    | Profondeur basse (m) | 0.9    |                   |      |
| Remarque             |                        |                      |        |                   |      |
| Nom de l'échantillon | GAL3-5_T1S(0.9-1.2)_20 | 00921                |        |                   |      |
| Date/Heure           | 21/09/2020 10:38:00    | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0.9                    | Profondeur basse (m) | 1.2    |                   |      |
| Remarque             |                        |                      |        |                   |      |
| Nom de l'échantillon | GAL3-5_T1S(0.9-1.2)_20 | 00921_D              |        |                   |      |
| Date/Heure           | 21/09/2020 10:38:00    | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0.9                    | Profondeur basse (m) | 1.2    |                   |      |
| Remarque             |                        |                      |        |                   |      |

QSSE Form 009 - Rev F Page 15/46





| ECHANTILLONS LIVRES AU LABORATOIRE |            |                |          |                 |                                                   |                        |              |                            |
|------------------------------------|------------|----------------|----------|-----------------|---------------------------------------------------|------------------------|--------------|----------------------------|
| Nom d'échantillon                  | Code barre | Type de flacon | Conserv. | Kit<br>méthanol | Analyse                                           | Laboratoire            | Date d'envoi | Conditions de<br>transport |
| GAL3-5_T1N(0.9-1.2)_200921         | V79680420  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux               | Synlab<br>Laboratories | 22/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T1S(0.4-0.6)_200921         | V79680510  | ALU210         | Aucun    | non             | HCT C10-C40                                       | Synlab<br>Laboratories | 22/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T1S(0.6-0.9)_200921         | V7968048U  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux               | Synlab<br>Laboratories | 22/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T1S(0.6-0.9)_200921         | V7968045R  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux               | Synlab<br>Laboratories | 22/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T1S(0.9-1.2)_200921         | V7968044Q  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux, Pack<br>ISDI | Synlab<br>Laboratories | 22/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T1S(0.9-1.2)_200921         | V7968043P  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux, Pack<br>ISDI | Synlab<br>Laboratories | 22/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T1N(0.9-<br>1.2)_200921_D   | V7968050N  | ALU210         | Aucun    | non             | En attente                                        | Synlab<br>Laboratories | 22/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T1S(0.4-<br>0.6)_200921_D   | V7968047T  | ALU210         | Aucun    | non             | En attente                                        | Synlab<br>Laboratories | 22/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T1S(0.6-<br>0.9)_200921_D   | V7968049V  | ALU210         | Aucun    | non             | En attente                                        | Synlab<br>Laboratories | 22/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T1S(0.9-<br>1.2)_200921_D   | V7968046S  | ALU210         | Aucun    | non             | Pack ISDI                                         | Synlab<br>Laboratories | 22/09/2020   | Glacière<br>réfrigérée     |

| OBSERVATIONS / NOTES |
|----------------------|
|                      |
|                      |
|                      |

QSSE Form 009 - Rev F Page 16/46





Nom du point : GAL3-5\_T10N

|                      |                        | ECHANTILL            | ONNAGE. |                   |      |
|----------------------|------------------------|----------------------|---------|-------------------|------|
| Nom de l'échantillon | GAL3-5_T10N(0.3-1)_20  | 00917                |         |                   |      |
| Date/Heure           | 17/09/2020 09:50:00    | Mode d'éch.          | SS      | Type de préleveur | main |
| Profondeur haute (m) | 0.3                    | Profondeur basse (m) | 1       | ,                 |      |
| Remarque             |                        |                      |         | ,                 |      |
| Nom de l'échantillon | GAL3-5_T10N(0.3-1)_20  | 00917_D              |         |                   |      |
| Date/Heure           | 17/09/2020 09:50:00    | Mode d'éch.          | SS      | Type de préleveur | main |
| Profondeur haute (m) | 0.3                    | Profondeur basse (m) | 1       | ,                 |      |
| Remarque             |                        |                      |         | ,                 |      |
| Nom de l'échantillon | GAL3-5_T10N(1.6-1.8)_: | 200917               |         |                   |      |
| Date/Heure           | 17/09/2020 09:51:00    | Mode d'éch.          | SS      | Type de préleveur | main |
| Profondeur haute (m) | 1.6                    | Profondeur basse (m) | 1.8     | ,                 |      |
| Remarque             |                        |                      |         |                   |      |
| Nom de l'échantillon | GAL3-5_T10N(1.6-1.8)_2 | 200917_D             |         |                   |      |
| Date/Heure           | 17/09/2020 09:51:00    | Mode d'éch.          | SS      | Type de préleveur | main |
| Profondeur haute (m) | 1.6                    | Profondeur basse (m) | 1.8     |                   |      |
| Remarque             |                        |                      |         |                   |      |
| Nom de l'échantillon | GAL3-5_T10N(1.8-2)_20  | 00917                |         |                   |      |
| Date/Heure           | 17/09/2020 09:52:00    | Mode d'éch.          | SS      | Type de préleveur | main |
| Profondeur haute (m) | 1.8                    | Profondeur basse (m) | 2       | ,                 |      |
| Remarque             |                        | -                    |         |                   |      |
| Nom de l'échantillon | GAL3-5_T10N(1.8-2)_20  | 0917_D               |         |                   |      |
| Date/Heure           | 17/09/2020 09:52:00    | Mode d'éch.          | SS      | Type de préleveur | main |
| Profondeur haute (m) | 1.8                    | Profondeur basse (m) | 2       |                   |      |
| Remarque             |                        |                      |         | ,                 |      |

QSSE Form 009 - Rev F Page 17/46







|                                   | ECHANTILLONS LIVRES AU LABORATOIRE |                |          |                 |                                     |                        |              |                            |
|-----------------------------------|------------------------------------|----------------|----------|-----------------|-------------------------------------|------------------------|--------------|----------------------------|
| Nom d'échantillon                 | Code barre                         | Type de flacon | Conserv. | Kit<br>méthanol | Analyse                             | Laboratoire            | Date d'envoi | Conditions de<br>transport |
| GAL3-5_T10N(0.3-1)_200917         | V7969187Z                          | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T10N(0.3-1)_200917         | V7969183V                          | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T10N(1.6-1.8)_200917       | V7969544W                          | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T10N(1.6-1.8)_200917       | V7969181T                          | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T10N(1.8-2)_200917         | V7969189.                          | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T10N(1.8-2)_200917         | V7969186Y                          | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T10N(0.3-<br>1)_200917_D   | V7969184W                          | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T10N(1.6-<br>1.8)_200917_D | V7969185X                          | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T10N(1.8-<br>2)_200917_D   | V7969199                           | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |

| OBSERVATIONS / NOTES |  |
|----------------------|--|
|                      |  |
|                      |  |

QSSE Form 009 - Rev F Page 18/46





Nom du point : GAL3-5\_T10S

|                      |                        | ECHANTILL            | ONNAGE |                   |      |
|----------------------|------------------------|----------------------|--------|-------------------|------|
| Nom de l'échantillon | GAL3-5_T10S(0.4-1.1)_2 | 200917               |        |                   |      |
| Date/Heure           | 17/09/2020 15:05:00    | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0.4                    | Profondeur basse (m) | 1.1    |                   |      |
| Remarque             |                        |                      |        |                   |      |
| Nom de l'échantillon | GAL3-5_T10S(0.4-1.1)_2 | 200917_D             |        |                   |      |
| Date/Heure           | 17/09/2020 15:05:00    | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0.4                    | Profondeur basse (m) | 1.1    |                   |      |
| Remarque             |                        |                      |        |                   |      |
| Nom de l'échantillon | GAL3-5_T10S(1.4-1.6)_  | 200917               |        |                   |      |
| Date/Heure           | 17/09/2020 15:06:00    | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 1.4                    | Profondeur basse (m) | 1.6    |                   |      |
| Remarque             |                        |                      |        |                   |      |
| Nom de l'échantillon | GAL3-5_T10S(1.4-1.6)_2 | 200917_D             |        |                   |      |
| Date/Heure           | 17/09/2020 15:06:00    | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 1.4                    | Profondeur basse (m) | 1.6    |                   |      |
| Remarque             |                        |                      |        |                   |      |
| Nom de l'échantillon | GAL3-5_T10S(2-2.3)_20  | 00917                |        |                   |      |
| Date/Heure           | 17/09/2020 15:07:00    | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 2                      | Profondeur basse (m) | 2.3    |                   |      |
| Remarque             |                        |                      |        |                   |      |
| Nom de l'échantillon | GAL3-5_T10S(2-2.3)_20  | 0917_D               |        |                   |      |
| Date/Heure           | 17/09/2020 15:07:00    | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 2                      | Profondeur basse (m) | 2.3    |                   |      |
| Remarque             |                        |                      |        |                   |      |

QSSE Form 009 - Rev F Page 19/46



| ECHANTILLONS LIVRES AU LABORATOIRE |            |                |          |                 |                                     |                        |              |                            |
|------------------------------------|------------|----------------|----------|-----------------|-------------------------------------|------------------------|--------------|----------------------------|
| Nom d'échantillon                  | Code barre | Type de flacon | Conserv. | Kit<br>méthanol | Analyse                             | Laboratoire            | Date d'envoi | Conditions de<br>transport |
| GAL3-5_T10S(0.4-1.1)_200917        | V21111802  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T10S(1.4-1.6)_200917        | V21111868  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T10S(1.4-1.6)_200917        | V21111846  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T10S(2-2.3)_200917          | V21111903  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T10S(0.4-<br>1.1)_200917_D  | V2111140+  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T10S(1.4-<br>1.6)_200917_D  | V21111778  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T10S(2-<br>2.3)_200917_D    | V21111622  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |

| OBSERVATIONS / NOTES |
|----------------------|
|                      |
|                      |
|                      |
|                      |

QSSE Form 009 - Rev F Page 20/46





Nom du point : GAL3-5\_T2

|                      |                       | ECHANTILL               | .ONNAGE |                   |      |  |
|----------------------|-----------------------|-------------------------|---------|-------------------|------|--|
| Nom de l'échantillon | GAL3-5_T2E(1-1.5)_200 | AL3-5_T2E(1-1.5)_200918 |         |                   |      |  |
| Date/Heure           | 18/09/2020 13:25:00   | Mode d'éch.             | SS      | Type de préleveur | main |  |
| Profondeur haute (m) | 1                     | Profondeur basse (m)    | 1.5     |                   |      |  |
| Remarque             |                       |                         |         |                   |      |  |
| Nom de l'échantillon | GAL3-5_T2E(1-1.5)_200 | 918_D                   |         |                   |      |  |
| Date/Heure           | 18/09/2020 13:25:00   | Mode d'éch.             | SS      | Type de préleveur | main |  |
| Profondeur haute (m) | 1                     | Profondeur basse (m)    | 1.5     |                   |      |  |
| Remarque             |                       |                         |         |                   |      |  |
| Nom de l'échantillon | GAL3-5_T2O(0.7-1)_200 | 918                     |         |                   |      |  |
| Date/Heure           | 18/09/2020 13:26:00   | Mode d'éch.             | SS      | Type de préleveur | main |  |
| Profondeur haute (m) | 0.7                   | Profondeur basse (m)    | 1       |                   |      |  |
| Remarque             |                       |                         |         |                   |      |  |
| Nom de l'échantillon | GAL3-5_T2O(0.7-1)_200 | 918_D                   |         |                   |      |  |
| Date/Heure           | 18/09/2020 13:26:00   | Mode d'éch.             | SS      | Type de préleveur | main |  |
| Profondeur haute (m) | 0.7                   | Profondeur basse (m)    | 1       |                   |      |  |
| Remarque             |                       |                         |         |                   |      |  |
| Nom de l'échantillon | GAL3-5_T2O(1-1.5)_200 | 918                     |         |                   |      |  |
| Date/Heure           | 18/09/2020 13:27:00   | Mode d'éch.             | SS      | Type de préleveur | main |  |
| Profondeur haute (m) | 1                     | Profondeur basse (m)    | 1.5     |                   |      |  |
| Remarque             |                       |                         |         |                   |      |  |
| Nom de l'échantillon | GAL3-5_T2O(1-1.5)_200 | 918_D                   |         |                   |      |  |
| Date/Heure           | 18/09/2020 13:27:00   | Mode d'éch.             | SS      | Type de préleveur | main |  |
| Profondeur haute (m) | 1                     | Profondeur basse (m)    | 1.5     |                   |      |  |
| Remarque             |                       |                         |         |                   |      |  |

QSSE Form 009 - Rev F Page 21/46



| ECHANTILLONS LIVRES AU LABORATOIRE |            |                |          |                 |                                     |                        |              |                            |
|------------------------------------|------------|----------------|----------|-----------------|-------------------------------------|------------------------|--------------|----------------------------|
| Nom d'échantillon                  | Code barre | Type de flacon | Conserv. | Kit<br>méthanol | Analyse                             | Laboratoire            | Date d'envoi | Conditions de<br>transport |
| GAL3-5_T2E(1-1.5)_200918           | V7969332R  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T2O(0.7-1)_200918           | V2111197A  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T2O(1-1.5)_200918           | V2111202/  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T2O(1-1.5)_200918           | V21111914  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T2E(1-1.5)_200918_D         | V7969331Q  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T2O(0.7-1)_200918_D         | V2111199C  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T2O(1-1.5)_200918_D         | V21111947  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |

| OBSERVATIONS / NOTES |
|----------------------|
|                      |
|                      |
|                      |
|                      |

QSSE Form 009 - Rev F Page 22/46





Nom du point : GAL3-5\_T3

|                      |                        | ECHANTILL            | ONNAGE. |                   |      |
|----------------------|------------------------|----------------------|---------|-------------------|------|
| Nom de l'échantillon | GAL3-5_T3N(0.4-0.6)_20 | 00921                |         |                   |      |
| Date/Heure           | 21/09/2020 15:30:00    | Mode d'éch.          | SS      | Type de préleveur | main |
| Profondeur haute (m) | 0.4                    | Profondeur basse (m) | 0.6     |                   |      |
| Remarque             |                        |                      |         |                   |      |
| Nom de l'échantillon | GAL3-5_T3N(0.4-0.6)_20 | 00921_D              |         |                   |      |
| Date/Heure           | 21/09/2020 15:30:00    | Mode d'éch.          | SS      | Type de préleveur | main |
| Profondeur haute (m) | 0.4                    | Profondeur basse (m) | 0.6     |                   |      |
| Remarque             |                        |                      |         |                   |      |
| Nom de l'échantillon | GAL3-5_T3N(0.8-1.1)_20 | 00921                |         |                   |      |
| Date/Heure           | 21/09/2020 15:31:00    | Mode d'éch.          | SS      | Type de préleveur | main |
| Profondeur haute (m) | 0.8                    | Profondeur basse (m) | 1.1     |                   |      |
| Remarque             |                        |                      |         |                   |      |
| Nom de l'échantillon | GAL3-5_T3N(0.8-1.1)_20 | 00921_D              |         |                   |      |
| Date/Heure           | 21/09/2020 15:31:00    | Mode d'éch.          | SS      | Type de préleveur | main |
| Profondeur haute (m) | 0.8                    | Profondeur basse (m) | 1.1     |                   |      |
| Remarque             |                        |                      |         |                   |      |
| Nom de l'échantillon | GAL3-5_T3S(0.8-1.1)_20 | 00921                |         |                   |      |
| Date/Heure           | 21/09/2020 15:32:00    | Mode d'éch.          | SS      | Type de préleveur | main |
| Profondeur haute (m) | 0.8                    | Profondeur basse (m) | 1.1     |                   |      |
| Remarque             |                        |                      |         |                   |      |
| Nom de l'échantillon | GAL3-5_T3S(0.8-1.1)_20 | 00921_D              |         |                   |      |
| Date/Heure           | 21/09/2020 15:32:00    | Mode d'éch.          | SS      | Type de préleveur | main |
| Profondeur haute (m) | 0.8                    | Profondeur basse (m) | 1.1     | ,                 |      |
| Remarque             |                        |                      |         |                   |      |

QSSE Form 009 - Rev F Page 23/46



| ECHANTILLONS LIVRES AU LABORATOIRE |            |                |          |                 |                                     |                        |              |                            |
|------------------------------------|------------|----------------|----------|-----------------|-------------------------------------|------------------------|--------------|----------------------------|
| Nom d'échantillon                  | Code barre | Type de flacon | Conserv. | Kit<br>méthanol | Analyse                             | Laboratoire            | Date d'envoi | Conditions de<br>transport |
| GAL3-5_T3N(0.4-0.6)_200921         | V7968060O  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 22/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T3N(0.8-1.1)_200921         | V7969323R  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 22/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T3N(0.8-1.1)_200921         | V7968056T  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 22/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T3S(0.8-1.1)_200921         | V7968041N  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 22/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T3N(0.4-<br>0.6)_200921_D   | V7969326U  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 22/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T3N(0.8-<br>1.1)_200921_D   | V7969333S  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 22/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T3S(0.8-<br>1.1)_200921_D   | V7969337W  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 22/09/2020   | Glacière<br>réfrigérée     |

| OBSERVATIONS / NOTES |
|----------------------|
|                      |
|                      |
|                      |
|                      |

QSSE Form 009 - Rev F Page 24/46





Nom du point : GAL3-5\_T4

|                      |                                                 | ECHANTILL            | .ONNAGE |                   |      |  |
|----------------------|-------------------------------------------------|----------------------|---------|-------------------|------|--|
| Nom de l'échantillon | Nom de l'échantillon GAL3-5_T4E(0.3-0.5)_200921 |                      |         |                   |      |  |
| Date/Heure           | 21/09/2020 12:50:00                             | Mode d'éch.          | SS      | Type de préleveur | main |  |
| Profondeur haute (m) | 0.3                                             | Profondeur basse (m) | 0.5     |                   |      |  |
| Remarque             |                                                 |                      |         |                   |      |  |
| Nom de l'échantillon | GAL3-5_T4E(0.3-0.5)_20                          | 00921_D              |         |                   |      |  |
| Date/Heure           | 21/09/2020 12:50:00                             | Mode d'éch.          | SS      | Type de préleveur | main |  |
| Profondeur haute (m) | 0.3                                             | Profondeur basse (m) | 0.5     |                   |      |  |
| Remarque             |                                                 |                      |         |                   |      |  |
| Nom de l'échantillon | GAL3-5_T4E(1-1.2)_200                           | 921                  |         |                   |      |  |
| Date/Heure           | 21/09/2020 12:51:00                             | Mode d'éch.          | SS      | Type de préleveur | main |  |
| Profondeur haute (m) | 1                                               | Profondeur basse (m) | 1.2     |                   |      |  |
| Remarque             |                                                 |                      |         |                   |      |  |
| Nom de l'échantillon | GAL3-5_T4E(1-1.2)_200921_D                      |                      |         |                   |      |  |
| Date/Heure           | 21/09/2020 12:51:00                             | Mode d'éch.          | SS      | Type de préleveur | main |  |
| Profondeur haute (m) | 1                                               | Profondeur basse (m) | 1.2     |                   |      |  |
| Remarque             |                                                 |                      |         |                   |      |  |
| Nom de l'échantillon | GAL3-5_T4O(1-1.2)_200                           | 921                  |         |                   |      |  |
| Date/Heure           | 21/09/2020 12:52:00                             | Mode d'éch.          | SS      | Type de préleveur | main |  |
| Profondeur haute (m) | 1                                               | Profondeur basse (m) | 1.2     |                   |      |  |
| Remarque             |                                                 |                      |         | ,                 |      |  |
| Nom de l'échantillon | GAL3-5_T4O(1-1.2)_200                           | )921_D               |         |                   |      |  |
| Date/Heure           | 21/09/2020 12:52:00                             | Mode d'éch.          | SS      | Type de préleveur | main |  |
| Profondeur haute (m) | 1                                               | Profondeur basse (m) | 1.2     |                   |      |  |
| Remarque             |                                                 | 1                    |         |                   |      |  |

QSSE Form 009 - Rev F Page 25/46



| ECHANTILLONS LIVRES AU LABORATOIRE |            |                |          |                 |                                     |                        |              |                            |
|------------------------------------|------------|----------------|----------|-----------------|-------------------------------------|------------------------|--------------|----------------------------|
| Nom d'échantillon                  | Code barre | Type de flacon | Conserv. | Kit<br>méthanol | Analyse                             | Laboratoire            | Date d'envoi | Conditions de<br>transport |
| GAL3-5_T4E(0.3-0.5)_200921         | V7968054R  | ALU210         | Aucun    | non             | HCT C10-C40                         | Synlab<br>Laboratories | 22/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T4E(1-1.2)_200921           | V7968057U  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 22/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T4E(1-1.2)_200921           | V7968053Q  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 22/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T4O(1-1.2)_200921           | V7968055S  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 22/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T4E(0.3-<br>0.5)_200921_D   | V7968058V  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 22/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T4E(1-1.2)_200921_D         | V7968059W  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 22/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T4O(1-1.2)_200921_D         | V7968061P  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 22/09/2020   | Glacière<br>réfrigérée     |

| OBSERVATIONS / NOTES |
|----------------------|
|                      |
|                      |
|                      |
|                      |

QSSE Form 009 - Rev F Page 26/46





Nom du point : GAL3-5\_T5N

| ECHANTILLONNAGE      |                        |                      |     |                   |      |  |
|----------------------|------------------------|----------------------|-----|-------------------|------|--|
| Nom de l'échantillon | GAL3-5_T5N(0.3-0.7)_20 | 00917                |     |                   |      |  |
| Date/Heure           | 17/09/2020 16:45:00    | Mode d'éch.          | SS  | Type de préleveur | main |  |
| Profondeur haute (m) | 0.3                    | Profondeur basse (m) | 0.7 |                   |      |  |
| Remarque             |                        |                      |     |                   |      |  |
| Nom de l'échantillon | GAL3-5_T5N(0.3-0.7)_20 | 00917_D              |     |                   |      |  |
| Date/Heure           | 17/09/2020 16:45:00    | Mode d'éch.          | SS  | Type de préleveur | main |  |
| Profondeur haute (m) | 0.3                    | Profondeur basse (m) | 0.7 |                   |      |  |
| Remarque             |                        |                      |     |                   |      |  |
| Nom de l'échantillon | GAL3-5_T5N(1.1-1.6)_20 | 00917                |     |                   |      |  |
| Date/Heure           | 17/09/2020 16:46:00    | Mode d'éch.          | SS  | Type de préleveur | main |  |
| Profondeur haute (m) | 1.1                    | Profondeur basse (m) | 1.6 |                   |      |  |
| Remarque             |                        |                      |     |                   |      |  |
| Nom de l'échantillon | GAL3-5_T5N(1.1-1.6)_20 | 00917_D              |     |                   |      |  |
| Date/Heure           | 17/09/2020 16:46:00    | Mode d'éch.          | SS  | Type de préleveur | main |  |
| Profondeur haute (m) | 1.1                    | Profondeur basse (m) | 1.6 |                   |      |  |
| Remarque             |                        |                      |     |                   |      |  |

QSSE Form 009 - Rev F Page 27/46



| ECHANTILLONS LIVRES AU LABORATOIRE |            |                |          |                 |                                     |                        |              |                            |
|------------------------------------|------------|----------------|----------|-----------------|-------------------------------------|------------------------|--------------|----------------------------|
| Nom d'échantillon                  | Code barre | Type de flacon | Conserv. | Kit<br>méthanol | Analyse                             | Laboratoire            | Date d'envoi | Conditions de<br>transport |
| GAL3-5_T5N(0.3-0.7)_200917         | V21112803  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T5N(1.1-1.6)_200917         | V21112836  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T5N(1.1-1.6)_200917         | V21111813  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T5N(0.3-<br>0.7)_200917_D   | V21112814  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T5N(1.1-<br>1.6)_200917_D   | V21112825  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |

| 0 | BSERVATIONS / NOTES |
|---|---------------------|
|   |                     |
|   |                     |

QSSE Form 009 - Rev F Page 28/46





Nom du point : GAL3-5\_T5S

|                      |                        | ECHANTILLO           | ONNAGE |                   |      |
|----------------------|------------------------|----------------------|--------|-------------------|------|
| Nom de l'échantillon | GAL3-5_T5S(0.4-0.6)_20 | 00916                |        |                   |      |
| Date/Heure           | 16/09/2020 15:55:00    | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0.4                    | Profondeur basse (m) | 0.6    |                   |      |
| Remarque             |                        |                      |        |                   |      |
| Nom de l'échantillon | GAL3-5_T5S(0.4-0.6)_20 | 00916_D              |        |                   |      |
| Date/Heure           | 16/09/2020 15:55:00    | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0.4                    | Profondeur basse (m) | 0.6    |                   |      |
| Remarque             |                        |                      |        |                   |      |
| Nom de l'échantillon | GAL3-5_T5S(0.9-1.5)_20 | 00916                |        |                   |      |
| Date/Heure           | 16/09/2020 15:56:00    | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0.9                    | Profondeur basse (m) | 1.5    |                   |      |
| Remarque             |                        |                      |        |                   |      |
| Nom de l'échantillon | GAL3-5_T5S(0.9-1.5)_20 | 00916_D              |        |                   |      |
| Date/Heure           | 16/09/2020 15:56:00    | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0.9                    | Profondeur basse (m) | 1.5    |                   |      |
| Remarque             |                        | <u> </u>             |        |                   |      |

QSSE Form 009 - Rev F Page 29/46



| ECHANTILLONS LIVRES AU LABORATOIRE |            |                |          |                 |                                     |                        |              |                            |
|------------------------------------|------------|----------------|----------|-----------------|-------------------------------------|------------------------|--------------|----------------------------|
| Nom d'échantillon                  | Code barre | Type de flacon | Conserv. | Kit<br>méthanol | Analyse                             | Laboratoire            | Date d'envoi | Conditions de<br>transport |
| GAL3-5_T5S(0.4-0.6)_200916         | V7955320J  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T5S(0.4-0.6)_200916         | V7781491P  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T5S(0.9-1.5)_200916         | V7967870W  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T5S(0.9-1.5)_200916         | V7955321K  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T5S(0.4-<br>0.6)_200916_D   | V7781505L  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T5S(0.9-<br>1.5)_200916_D   | V21107537  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |

| OBSERVATIONS / NOTES |  |
|----------------------|--|
|                      |  |
|                      |  |

QSSE Form 009 - Rev F Page 30/46





Nom du point : GAL3-5\_T6N

|                      |                                           | ECHANTILL            | ONNAGE. |                   |      |  |
|----------------------|-------------------------------------------|----------------------|---------|-------------------|------|--|
| Nom de l'échantillon | de l'échantillon GAL3-5_T6N(0.4-1)_200916 |                      |         |                   |      |  |
| Date/Heure           | 16/09/2020 13:40:00                       | Mode d'éch.          | SS      | Type de préleveur | main |  |
| Profondeur haute (m) | 0.4                                       | Profondeur basse (m) | 1       |                   |      |  |
| Remarque             |                                           |                      |         | ,                 |      |  |
| Nom de l'échantillon | GAL3-5_T6N(0.4-1)_200                     | )916_D               |         |                   |      |  |
| Date/Heure           | 16/09/2020 13:40:00                       | Mode d'éch.          | SS      | Type de préleveur | main |  |
| Profondeur haute (m) | 0.4                                       | Profondeur basse (m) | 1       |                   |      |  |
| Remarque             |                                           |                      |         |                   |      |  |
| Nom de l'échantillon | GAL3-5_T6N(1-1.2)_200                     | 916                  |         |                   |      |  |
| Date/Heure           | 16/09/2020 13:41:00                       | Mode d'éch.          | SS      | Type de préleveur | main |  |
| Profondeur haute (m) | 1                                         | Profondeur basse (m) | 1.2     |                   |      |  |
| Remarque             |                                           |                      |         |                   |      |  |
| Nom de l'échantillon | GAL3-5_T6N(1-1.2)_200                     | )916_D               |         |                   |      |  |
| Date/Heure           | 16/09/2020 13:41:00                       | Mode d'éch.          | SS      | Type de préleveur | main |  |
| Profondeur haute (m) | 1                                         | Profondeur basse (m) | 1.2     |                   |      |  |
| Remarque             |                                           |                      |         |                   |      |  |
| Nom de l'échantillon | GAL3-5_T6N(1.7-2)_200                     | 916                  |         |                   |      |  |
| Date/Heure           | 16/09/2020 13:42:00                       | Mode d'éch.          | SS      | Type de préleveur | main |  |
| Profondeur haute (m) | 1.7                                       | Profondeur basse (m) | 2       |                   |      |  |
| Remarque             |                                           |                      |         |                   |      |  |
| Nom de l'échantillon | GAL3-5_T6N(1.7-2)_200                     | 0916_D               |         |                   |      |  |
| Date/Heure           | 16/09/2020 13:42:00                       | Mode d'éch.          | SS      | Type de préleveur | main |  |
| Profondeur haute (m) | 1.7                                       | Profondeur basse (m) | 2       |                   |      |  |
| Remarque             |                                           |                      |         |                   |      |  |

QSSE Form 009 - Rev F Page 31/46





| ECHANTILLONS LIVRES AU LABORATOIRE |            |                |          |                 |                                     |                        |              |                            |
|------------------------------------|------------|----------------|----------|-----------------|-------------------------------------|------------------------|--------------|----------------------------|
| Nom d'échantillon                  | Code barre | Type de flacon | Conserv. | Kit<br>méthanol | Analyse                             | Laboratoire            | Date d'envoi | Conditions de<br>transport |
| GAL3-5_T6N(0.4-1)_200916           | V21111352  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T6N(0.4-1)_200916           | V2110756A  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T6N(1.7-2)_200916           | V21111295  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T6N(1.7-2)_200916           | V21107548  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T6N(1-1.2)_200916           | V21111341  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T6N(1-1.2)_200916           | V21107559  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T6N(0.4-1)_200916_D         | V21107526  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T6N(1.7-2)_200916_D         | V21111554  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T6N(1-1.2)_200916_D         | V21111396  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |

| OBSERVATIONS / NOTES |  |
|----------------------|--|
|                      |  |
|                      |  |

QSSE Form 009 - Rev F Page 32/46





Nom du point : GAL3-5\_T6S

|                      |                       | ECHANTILL            | ONNAGE |                   |      |
|----------------------|-----------------------|----------------------|--------|-------------------|------|
| Nom de l'échantillon | GAL3-5_T6S(0.3-1)_200 | 916                  |        |                   |      |
| Date/Heure           | 16/09/2020 11:00:00   | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0.3                   | Profondeur basse (m) | 1      |                   |      |
| Remarque             |                       |                      |        |                   |      |
| Nom de l'échantillon | GAL3-5_T6S(0.3-1)_200 | 916_D                |        |                   |      |
| Date/Heure           | 16/09/2020 11:00:00   | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0.3                   | Profondeur basse (m) | 1      |                   |      |
| Remarque             |                       |                      |        |                   |      |
| Nom de l'échantillon | GAL3-5_T6S(1-1.3)_200 | 916                  |        |                   |      |
| Date/Heure           | 16/09/2020 11:01:00   | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 1                     | Profondeur basse (m) | 1.3    |                   |      |
| Remarque             |                       |                      |        |                   |      |
| Nom de l'échantillon | GAL3-5_T6S(1-1.3)_200 | 916_D                |        |                   |      |
| Date/Heure           | 16/09/2020 11:01:00   | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 1                     | Profondeur basse (m) | 1.3    |                   |      |
| Remarque             |                       |                      |        |                   |      |

QSSE Form 009 - Rev F Page 33/46



| ECHANTILLONS LIVRES AU LABORATOIRE |            |                |          |                 |                                     |                        |              |                            |
|------------------------------------|------------|----------------|----------|-----------------|-------------------------------------|------------------------|--------------|----------------------------|
| Nom d'échantillon                  | Code barre | Type de flacon | Conserv. | Kit<br>méthanol | Analyse                             | Laboratoire            | Date d'envoi | Conditions de<br>transport |
| GAL3-5_T6S(0.3-1)_200916           | V21111475  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T6S(0.3-1)_200916           | V21111431  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T6S(1-1.3)_200916           | V2111141%  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T6S(1-1.3)_200916           | V21111374  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T6S(0.3-1)_200916_D         | V21111521  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T6S(1-1.3)_200916_D         | V21111420  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |

| OBSERVATIONS / NOTES |  |
|----------------------|--|
|                      |  |
|                      |  |

QSSE Form 009 - Rev F Page 34/46





Nom du point : GAL3-5\_T7N

|                      |                        | ECHANTILLO           | ONNAGE |                   |      |
|----------------------|------------------------|----------------------|--------|-------------------|------|
| Nom de l'échantillon | GAL3-5_T7N(0-0.5)_200  | 917                  |        |                   |      |
| Date/Heure           | 17/09/2020 17:35:00    | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0                      | Profondeur basse (m) | 0.5    |                   |      |
| Remarque             |                        |                      |        |                   |      |
| Nom de l'échantillon | GAL3-5_T7N(0-0.5)_200  | 917_D                |        |                   |      |
| Date/Heure           | 17/09/2020 17:35:00    | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0                      | Profondeur basse (m) | 0.5    |                   |      |
| Remarque             |                        |                      |        |                   |      |
| Nom de l'échantillon | GAL3-5_T7N(1.6-1.8)_20 | 00917                |        |                   |      |
| Date/Heure           | 17/09/2020 17:36:00    | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 1.6                    | Profondeur basse (m) | 1.8    |                   |      |
| Remarque             |                        |                      |        |                   |      |
| Nom de l'échantillon | GAL3-5_T7N(1.6-1.8)_20 | 00917_D              |        |                   |      |
| Date/Heure           | 17/09/2020 17:36:00    | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 1.6                    | Profondeur basse (m) | 1.8    |                   |      |
| Remarque             |                        |                      |        |                   |      |

QSSE Form 009 - Rev F Page 35/46



| ECHANTILLONS LIVRES AU LABORATOIRE |            |                |          |                 |                                                   |                        |              |                         |
|------------------------------------|------------|----------------|----------|-----------------|---------------------------------------------------|------------------------|--------------|-------------------------|
| Nom d'échantillon                  | Code barre | Type de flacon | Conserv. | Kit<br>méthanol | Analyse                                           | Laboratoire            | Date d'envoi | Conditions de transport |
| GAL3-5_T7N(0-0.5)_200917           | V21112915  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux, Pack<br>ISDI | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée  |
| GAL3-5_T7N(0-0.5)_200917           | V21112904  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux, Pack<br>ISDI | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée  |
| GAL3-5_T7N(1.6-1.8)_200917         | V2111287A  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux               | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée  |
| GAL3-5_T7N(0-0.5)_200917_D         | V2111289C  | ALU210         | Aucun    | non             | Pack ISDI                                         | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée  |
| GAL3-5_T7N(1.6-<br>1.8)_200917_D   | V21112926  | ALU210         | Aucun    | non             | En attente                                        | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée  |

| 0 | BSERVATIONS / NOTES |
|---|---------------------|
|   |                     |
|   |                     |

QSSE Form 009 - Rev F Page 36/46





Nom du point : GAL3-5\_T7S

|                      |                                               | ECHANTILL            | ONNAGE. |                   |      |
|----------------------|-----------------------------------------------|----------------------|---------|-------------------|------|
| Nom de l'échantillon | m de l'échantillon GAL3-5_T7S(0.3-0.6)_200916 |                      |         |                   |      |
| Date/Heure           | 16/09/2020 18:15:00                           | Mode d'éch.          | SS      | Type de préleveur | main |
| Profondeur haute (m) | 0.3                                           | Profondeur basse (m) | 0.6     |                   |      |
| Remarque             |                                               |                      |         |                   |      |
| Nom de l'échantillon | GAL3-5_T7S(0.3-0.6)_20                        | 00916_D              |         |                   |      |
| Date/Heure           | 16/09/2020 18:15:00                           | Mode d'éch.          | SS      | Type de préleveur | main |
| Profondeur haute (m) | 0.3                                           | Profondeur basse (m) | 0.6     |                   |      |
| Remarque             |                                               |                      |         |                   |      |
| Nom de l'échantillon | GAL3-5_T7S(0.6-1)_200                         | 916                  |         |                   |      |
| Date/Heure           | 16/09/2020 18:16:00                           | Mode d'éch.          | SS      | Type de préleveur | main |
| Profondeur haute (m) | 0.6                                           | Profondeur basse (m) | 1       |                   |      |
| Remarque             |                                               |                      |         |                   |      |
| Nom de l'échantillon | GAL3-5_T7S(0.6-1)_200                         | 916_D                |         |                   |      |
| Date/Heure           | 16/09/2020 18:16:00                           | Mode d'éch.          | SS      | Type de préleveur | main |
| Profondeur haute (m) | 0.6                                           | Profondeur basse (m) | 1       |                   |      |
| Remarque             |                                               |                      |         |                   |      |
| Nom de l'échantillon | GAL3-5_T7S(1.4-1.6)_20                        | 00916                |         |                   |      |
| Date/Heure           | 16/09/2020 18:17:00                           | Mode d'éch.          | SS      | Type de préleveur | main |
| Profondeur haute (m) | 1.4                                           | Profondeur basse (m) | 1.6     |                   |      |
| Remarque             |                                               |                      |         |                   |      |
| Nom de l'échantillon | GAL3-5_T7S(1.4-1.6)_20                        | 00916_D              |         |                   |      |
| Date/Heure           | 16/09/2020 18:17:00                           | Mode d'éch.          | SS      | Type de préleveur | main |
| Profondeur haute (m) | 1.4                                           | Profondeur basse (m) | 1.6     |                   |      |
| Remarque             |                                               |                      |         |                   |      |

QSSE Form 009 - Rev F Page 37/46



ALU210

ALU210

ALU210

ALU210

V21107728

V21107605

V2110768D

V21107627

RAMBOLL

GAL3-5\_T7S(1.4-1.6)\_200916

GAL3-5\_T7S(0.6-1)\_200916\_D

GAL3-5\_T7S(0.3-0.6)\_200916\_D

GAL3-5\_T7S(1.4-1.6)\_200916\_D

### FICHE DE PRELEVEMENT DE SOL

Synlab Laboratories

Synlab Laboratories

Laboratories

Synlab Laboratories

Synlab

Glacière

réfrigérée

Glacière réfrigérée

Glacière

réfrigérée

Glacière

réfrigérée

21/09/2020

21/09/2020

21/09/2020

21/09/2020

|                            |            | ECHANTILL      | ONS LIVR | ES AU LA        | BORATOIRE                           |                        |              |                         |
|----------------------------|------------|----------------|----------|-----------------|-------------------------------------|------------------------|--------------|-------------------------|
| Nom d'échantillon          | Code barre | Type de flacon | Conserv. | Kit<br>méthanol | Analyse                             | Laboratoire            | Date d'envoi | Conditions de transport |
| GAL3-5_T7S(0.3-0.6)_200916 | V21107739  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée  |
| GAL3-5_T7S(0.3-0.6)_200916 | V2110769E  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée  |
| GAL3-5_T7S(0.6-1)_200916   | V21107717  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée  |
| GAL3-5_T7S(0.6-1)_200916   | V21107649  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée  |
| GAL3-5_T7S(1.4-1.6)_200916 | V2110775B  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée  |

Aucun

Aucun

Aucun

Aucun

En attente

En attente

En attente

En attente

non

non

non

| OBSERVATIONS / NOTES |
|----------------------|
|                      |
|                      |
|                      |

QSSE Form 009 - Rev F Page 38/46





Nom du point : GAL3-5\_T8N

|                      |                        | ECHANTILLO           | ONNAGE |                   |      |
|----------------------|------------------------|----------------------|--------|-------------------|------|
| Nom de l'échantillon | GAL3-5_T8N(0.3-0.7)_20 | 00916                |        |                   |      |
| Date/Heure           | 16/09/2020 16:45:00    | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0.3                    | Profondeur basse (m) | 0.7    |                   |      |
| Remarque             |                        |                      |        |                   |      |
| Nom de l'échantillon | GAL3-5_T8N(0.3-0.7)_20 | 00916_D              |        |                   |      |
| Date/Heure           | 16/09/2020 16:45:00    | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0.3                    | Profondeur basse (m) | 0.7    |                   |      |
| Remarque             |                        |                      |        |                   |      |
| Nom de l'échantillon | GAL3-5_T8N(1.1-1.6)_20 | 00916                |        |                   |      |
| Date/Heure           | 16/09/2020 16:46:00    | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 1.1                    | Profondeur basse (m) | 1.6    |                   |      |
| Remarque             |                        |                      |        |                   |      |
| Nom de l'échantillon | GAL3-5_T8N(1.1-1.6)_20 | 00916_D              |        |                   |      |
| Date/Heure           | 16/09/2020 16:46:00    | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 1.1                    | Profondeur basse (m) | 1.6    |                   |      |
| Remarque             |                        |                      |        |                   |      |

QSSE Form 009 - Rev F Page 39/46



| ECHANTILLONS LIVRES AU LABORATOIRE |            |                |          |                 |                                     |                        |              |                            |
|------------------------------------|------------|----------------|----------|-----------------|-------------------------------------|------------------------|--------------|----------------------------|
| Nom d'échantillon                  | Code barre | Type de flacon | Conserv. | Kit<br>méthanol | Analyse                             | Laboratoire            | Date d'envoi | Conditions de<br>transport |
| GAL3-5_T8N(0.3-0.7)_200916         | V2110766B  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T8N(0.3-0.7)_200916         | V21107616  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T8N(1.1-1.6)_200916         | V2110759D  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T8N(1.1-1.6)_200916         | V2110757B  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T8N(0.3-<br>0.7)_200916_D   | V2110765   | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T8N(1.1-<br>1.6)_200916_D   | V2110758C  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |

| OBSERVATIONS / NOTES |  |
|----------------------|--|
|                      |  |
|                      |  |

QSSE Form 009 - Rev F Page 40/46





Nom du point : GAL3-5\_T8S

|                      |                                             | ECHANTILL                             | ONNAGE |                   |      |
|----------------------|---------------------------------------------|---------------------------------------|--------|-------------------|------|
| Nom de l'échantillon | de l'échantillon GAL3-5_T8S(0.2-0.7)_200917 |                                       |        |                   |      |
| Date/Heure           | 17/09/2020 12:10:00                         | Mode d'éch.                           | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0.2                                         | Profondeur basse (m)                  | 0.7    | '                 |      |
| Remarque             |                                             |                                       |        | ,                 |      |
| Nom de l'échantillon | GAL3-5_T8S(0.2-0.7)_20                      | 00917_D                               |        |                   |      |
| Date/Heure           | 17/09/2020 12:10:00                         | Mode d'éch.                           | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0.2                                         | Profondeur basse (m)                  | 0.7    | '                 |      |
| Remarque             |                                             |                                       |        |                   |      |
| Nom de l'échantillon | GAL3-5_T8S(1.1-1.3)_20                      | 00917                                 |        |                   |      |
| Date/Heure           | 17/09/2020 12:11:00                         | Mode d'éch.                           | SS     | Type de préleveur | main |
| Profondeur haute (m) | 1.1                                         | Profondeur basse (m)                  | 1.3    | '                 |      |
| Remarque             |                                             |                                       |        |                   |      |
| Nom de l'échantillon | GAL3-5_T8S(1.1-1.3)_20                      | 00917_D                               |        |                   |      |
| Date/Heure           | 17/09/2020 12:11:00                         | Mode d'éch.                           | SS     | Type de préleveur | main |
| Profondeur haute (m) | 1.1                                         | Profondeur basse (m)                  | 1.3    |                   |      |
| Remarque             |                                             |                                       |        |                   |      |
| Nom de l'échantillon | GAL3-5_T8S(1.3-1.5)_20                      | 00917                                 |        |                   |      |
| Date/Heure           | 17/09/2020 12:12:00                         | Mode d'éch.                           | SS     | Type de préleveur | main |
| Profondeur haute (m) | 1.3                                         | Profondeur basse (m)                  | 1.5    | '                 |      |
| Remarque             |                                             | ,                                     |        |                   |      |
| Nom de l'échantillon | GAL3-5_T8S(1.3-1.5)_20                      | 00917_D                               |        |                   |      |
| Date/Heure           | 17/09/2020 12:12:00                         | Mode d'éch.                           | SS     | Type de préleveur | main |
| Profondeur haute (m) | 1.3                                         | Profondeur basse (m)                  | 1.5    |                   |      |
| Remarque             |                                             | · · · · · · · · · · · · · · · · · · · |        |                   |      |

QSSE Form 009 - Rev F Page 41/46



| ECHANTILLONS LIVRES AU LABORATOIRE |            |                |          |                 |                                     |                        |              |                            |
|------------------------------------|------------|----------------|----------|-----------------|-------------------------------------|------------------------|--------------|----------------------------|
| Nom d'échantillon                  | Code barre | Type de flacon | Conserv. | Kit<br>méthanol | Analyse                             | Laboratoire            | Date d'envoi | Conditions de<br>transport |
| GAL3-5_T8S(0.2-0.7)_200917         | V21111958  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T8S(1.1-1.3)_200917         | V7969197-  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T8S(1.1-1.3)_200917         | V2111188A  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T8S(1.3-1.5)_200917         | V21111879  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T8S(0.2-<br>0.7)_200917_D   | V7969193W  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T8S(1.1-<br>1.3)_200917_D   | V21111925  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T8S(1.3-<br>1.5)_200917_D   | V2111189B  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |

| OBSERVATIONS / NOTES |
|----------------------|
|                      |
|                      |
|                      |
|                      |

QSSE Form 009 - Rev F Page 42/46





Nom du point : GAL3-5\_T9N

|                      |                        | ECHANTILL            | ONNAGE |                   |      |
|----------------------|------------------------|----------------------|--------|-------------------|------|
| Nom de l'échantillon | GAL3-5_T9N(0-0.1)_200  | 917                  |        |                   |      |
| Date/Heure           | 17/09/2020 18:30:00    | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0                      | Profondeur basse (m) | 0.1    |                   |      |
| Remarque             |                        |                      |        | ·                 |      |
| Nom de l'échantillon | GAL3-5_T9N(0-0.1)_200  | 917_D                |        |                   |      |
| Date/Heure           | 17/09/2020 18:30:00    | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0                      | Profondeur basse (m) | 0.1    |                   |      |
| Remarque             |                        |                      |        |                   |      |
| Nom de l'échantillon | GAL3-5_T9N(0.1-0.4)_20 | 00917                |        |                   |      |
| Date/Heure           | 17/09/2020 18:31:00    | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0.1                    | Profondeur basse (m) | 0.4    |                   |      |
| Remarque             |                        |                      |        |                   |      |
| Nom de l'échantillon | GAL3-5_T9N(0.1-0.4)_20 | 00917_D              |        |                   |      |
| Date/Heure           | 17/09/2020 18:31:00    | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 0.1                    | Profondeur basse (m) | 0.4    |                   |      |
| Remarque             |                        |                      |        |                   |      |
| Nom de l'échantillon | GAL3-5_T9N(1.7-1.9)_20 | 00917                |        |                   |      |
| Date/Heure           | 17/09/2020 18:32:00    | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 1.7                    | Profondeur basse (m) | 1.9    |                   |      |
| Remarque             |                        |                      |        | ,                 |      |
| Nom de l'échantillon | GAL3-5_T9N(1.7-1.9)_20 | 00917_D              |        |                   |      |
| Date/Heure           | 17/09/2020 18:32:00    | Mode d'éch.          | SS     | Type de préleveur | main |
| Profondeur haute (m) | 1.7                    | Profondeur basse (m) | 1.9    |                   |      |
| Remarque             |                        | ,                    |        |                   |      |

QSSE Form 009 - Rev F Page 43/46



| Nom d'échantillon                | Code barre | Type de flacon | Conserv. | Kit<br>méthanol | Analyse                             | Laboratoire            | Date d'envoi | Conditions de<br>transport |
|----------------------------------|------------|----------------|----------|-----------------|-------------------------------------|------------------------|--------------|----------------------------|
| GAL3-5_T9N(0.1-0.4)_200917       | V21112869  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T9N(0.1-0.4)_200917       | V21112779  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T9N(0-0.1)_200917         | V21112858  | ALU210         | Aucun    | non             | HCT C10-C40                         | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T9N(1.7-1.9)_200917       | V21112735  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T9N(0.1-<br>0.4)_200917_D | V21112746  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T9N(0-0.1)_200917_D       | V2111279B  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T9N(1.7-<br>1.9)_200917_D | V21112757  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |

| OBSERVATIONS / NOTES |
|----------------------|
|                      |
|                      |
|                      |
|                      |

QSSE Form 009 - Rev F Page 44/46





Nom du point : GAL3-5\_T9S

|                      |                                               | ECHANTILL            | ONNAGE |                   |      |  |  |  |  |
|----------------------|-----------------------------------------------|----------------------|--------|-------------------|------|--|--|--|--|
| Nom de l'échantillon | n de l'échantillon GAL3-5_T9S(0.3-0.6)_200917 |                      |        |                   |      |  |  |  |  |
| Date/Heure           | 17/09/2020 11:00:00                           | Mode d'éch.          | SS     | Type de préleveur | main |  |  |  |  |
| Profondeur haute (m) | 0.3                                           | Profondeur basse (m) | 0.6    |                   |      |  |  |  |  |
| Remarque             |                                               |                      |        | ,                 |      |  |  |  |  |
| Nom de l'échantillon | GAL3-5_T9S(0.3-0.6)_20                        | 00917_D              |        |                   |      |  |  |  |  |
| Date/Heure           | 17/09/2020 11:00:00                           | Mode d'éch.          | SS     | Type de préleveur | main |  |  |  |  |
| Profondeur haute (m) | 0.3                                           | Profondeur basse (m) | 0.6    |                   |      |  |  |  |  |
| Remarque             |                                               |                      |        |                   |      |  |  |  |  |
| Nom de l'échantillon | GAL3-5_T9S(1.4-1.7)_20                        | 00917                |        |                   |      |  |  |  |  |
| Date/Heure           | 17/09/2020 11:01:00                           | Mode d'éch.          | SS     | Type de préleveur | main |  |  |  |  |
| Profondeur haute (m) | 1.4                                           | Profondeur basse (m) | 1.7    |                   |      |  |  |  |  |
| Remarque             |                                               |                      |        |                   |      |  |  |  |  |
| Nom de l'échantillon | GAL3-5_T9S(1.4-1.7)_20                        | 00917_D              |        |                   |      |  |  |  |  |
| Date/Heure           | 17/09/2020 11:01:00                           | Mode d'éch.          | SS     | Type de préleveur | main |  |  |  |  |
| Profondeur haute (m) | 1.4                                           | Profondeur basse (m) | 1.7    |                   |      |  |  |  |  |
| Remarque             |                                               |                      |        |                   |      |  |  |  |  |
| Nom de l'échantillon | GAL3-5_T9S(1.7-2)_200                         | 917                  |        |                   |      |  |  |  |  |
| Date/Heure           | 17/09/2020 11:02:00                           | Mode d'éch.          | SS     | Type de préleveur | main |  |  |  |  |
| Profondeur haute (m) | 1.7                                           | Profondeur basse (m) | 2      | '                 |      |  |  |  |  |
| Remarque             |                                               |                      |        |                   |      |  |  |  |  |
| Nom de l'échantillon | GAL3-5_T9S(1.7-2)_200                         | 917_D                |        |                   |      |  |  |  |  |
| Date/Heure           | 17/09/2020 11:02:00                           | Mode d'éch.          | SS     | Type de préleveur | main |  |  |  |  |
| Profondeur haute (m) | 1.7                                           | Profondeur basse (m) | 2      |                   |      |  |  |  |  |
| Remarque             |                                               |                      |        | ,                 |      |  |  |  |  |

QSSE Form 009 - Rev F Page 45/46







| ECHANTILLONS LIVRES AU LABORATOIRE |            |                |          |                 |                                     |                        |              |                            |
|------------------------------------|------------|----------------|----------|-----------------|-------------------------------------|------------------------|--------------|----------------------------|
| Nom d'échantillon                  | Code barre | Type de flacon | Conserv. | Kit<br>méthanol | Analyse                             | Laboratoire            | Date d'envoi | Conditions de<br>transport |
| GAL3-5_T9S(0.3-0.6)_200917         | V7969194X  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T9S(0.3-0.6)_200917         | V7969188-  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T9S(1.4-1.7)_200917         | V7969200L  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T9S(1.4-1.7)_200917         | V7969196Z  | ALU210         | Aucun    | non             | BTEX, HAP, HCT C5-<br>C40, 8 métaux | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T9S(1.7-2)_200917           | V7969191U  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T9S(1.7-2)_200917           | V7969190T  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T9S(0.3-<br>0.6)_200917_D   | V7969192V  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T9S(1.4-<br>1.7)_200917_D   | V7969195Y  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |
| GAL3-5_T9S(1.7-2)_200917_D         | V7969198.  | ALU210         | Aucun    | non             | En attente                          | Synlab<br>Laboratories | 21/09/2020   | Glacière<br>réfrigérée     |

| OBSERVATIONS / NOTES |
|----------------------|
|                      |
|                      |
|                      |
|                      |

QSSE Form 009 - Rev F Page 46/46



Nom du point : GAL3-5\_MW1

| Code Projet      | FRTOTMS020-P2            | Date/heure de début  | 24/09/2020 16:13:00 |
|------------------|--------------------------|----------------------|---------------------|
| Site             | TOT-RET Vauvert - GAL3-5 | Date/heure de fin    | 24/09/2020 16:18:00 |
| Client           | Total - RETIA            | Opérateur(s) RAMBOLL | VDA                 |
| Conditions météo | 25/09/2020               | Vérificateur         | ADE                 |

| CARACTERISTIQUES OUVRAGE   |                               |                             |                |  |  |  |
|----------------------------|-------------------------------|-----------------------------|----------------|--|--|--|
| Syst. de coordonnées       | Neuf                          |                             |                |  |  |  |
| х                          | 803516.988                    | Protection de l'ouvrage     | Capot hors sol |  |  |  |
| Υ                          | 6282753                       | Diamètre int. du tube (mm)  | 80             |  |  |  |
| Identification du repère   | Haut capot métal              | Diamètre du forage (mm)     | 156            |  |  |  |
| Description du lieu        | Prairie partiellement arborée | Vol./m de colonne d'eau (L) | 7.58           |  |  |  |
| Altitude du TN (m NGF)     | 1.629                         | Haut crépine (m/rep)        | 3              |  |  |  |
| Altitude du repère (m NGF) | 1.63                          | Bas crépine (m/rep)         | 7              |  |  |  |

| OBSERVATIONS AVANT POMPAGE |       |                         |             |  |  |  |
|----------------------------|-------|-------------------------|-------------|--|--|--|
| Profondeur ouvrage (m/rep) | 7.29  | PID à l'ouverture (ppm) | 0           |  |  |  |
| Ouvrage sec ?              | non   | Altitude nappe (m NGF)  | 0.51        |  |  |  |
| Niveau statique (m/rep)    | 1.12  | Epaisseur LNAPL (m)     | Non observé |  |  |  |
| Volume d'eau Vp (L)        | 46.77 | Epaisseur DNAPL (m)     | Non observé |  |  |  |

| PURGE                                                 |                   |                              |                          |  |  |  |
|-------------------------------------------------------|-------------------|------------------------------|--------------------------|--|--|--|
| Statique/dynamique Dynamique Dénoyage non             |                   |                              |                          |  |  |  |
| Equipement utilisé                                    | Pompe Mega Purger | Volume total purgé (L)       | 12.5                     |  |  |  |
| Num. de la pompe                                      | A3                | Taux de renouvellement       | 0.27                     |  |  |  |
| Nettoyage pompe                                       | oui               | Stabilisation paramètres φ/χ | oui                      |  |  |  |
| Position pompe (m/rep)                                | 6.8               | Gestion eaux de purge        | Filtration charbon actif |  |  |  |
| MESURES PHYSICO-CHIMIQUES REALISEES EN COURS DE PURGE |                   |                              |                          |  |  |  |
| Appareil de mesure                                    | Hanna HI 98194    | Date de calibration          | 11/09/2020               |  |  |  |

|               | MESURES PHYSICO-CHIMIQUES REALISEES AU COURS DU PRELEVEMENT |                      |                  |               |                  |             |                    |         |         |             |
|---------------|-------------------------------------------------------------|----------------------|------------------|---------------|------------------|-------------|--------------------|---------|---------|-------------|
| Temps<br>(mn) | Vol. purgé<br>(L)                                           | Niv. Dyn.<br>(m/rep) | pH<br>(unité pH) | Temp.<br>(°C) | Cond.<br>(µS/cm) | ORP<br>(mV) | O2 diss.<br>(mg/L) | Couleur | Turbid. | Obs. organ. |
| 9             | 7.5                                                         | 2.72                 | 6.53             | 17.42         | 1969             | 55.4        | 0.21               | Marron  | Faible  | Filtration  |
| 12            | 9                                                           | 3.03                 | 6.51             | 17.68         | 1965             | 55.9        | 0.24               | Marron  | Faible  | Filtration  |
| 15            | 12.5                                                        | 3.49                 | 6.51             | 17.66         | 1970             | 55.6        | 0.36               | Marron  | Faible  | Filtration  |

QSSE Form 009 - Rev F Page 1/6



| ECHANTILLONNAGE               |      |                   |                               |                |  |
|-------------------------------|------|-------------------|-------------------------------|----------------|--|
| Nom de l'échantillon MW1_2009 | 24   |                   |                               |                |  |
| Débit de prélèvement (L/ı     | min) | 0.5               | Niveau de prélèvement (m/rep) | Non disponible |  |
| Méthode de prélèveme          | nt   | Pompe Mega Purger |                               |                |  |
| Remarque                      | 1    |                   |                               |                |  |

| ECHANTILLONS LIVRES AU LABORATOIRE |            |                |          |            |          |                     |                 |                            |
|------------------------------------|------------|----------------|----------|------------|----------|---------------------|-----------------|----------------------------|
| Nom d'échantillon                  | Code barre | Type de flacon | Conserv. | Filtration | Analyse  | Laboratoire         | Date<br>d'envoi | Conditions de<br>Transport |
| MW1_200924                         | S1088684K  | ALC237         | Aucun    | non        | НАР      | Synlab Laboratories | 25/09/2020      | Glacière<br>réfrigérée     |
| MW1_200924                         | G6869364F  | ALC236         | H2SO4    | non        | BTEX HCT | Synlab Laboratories | 25/09/2020      | Glacière<br>réfrigérée     |
| MW1_200924                         | G6869332A  | ALC236         | H2SO4    | non        | BTEX HCT | Synlab Laboratories | 25/09/2020      | Glacière<br>réfrigérée     |
| MW1_200924                         | B19578727  | ALC204         | HNO3     | oui        | Métaux   | Synlab Laboratories | 25/09/2020      | Glacière<br>réfrigérée     |

| OBSERVATIONS / NOTES |  |
|----------------------|--|
| Boueux au fond       |  |
|                      |  |
|                      |  |

QSSE Form 009 - Rev F Page 2/6



Nom du point : GAL3-5\_MW2

| Code Projet      | FRTOTMS020-P2            | Date/heure de début  | 24/09/2020 15:33:00 |
|------------------|--------------------------|----------------------|---------------------|
| Site             | TOT-RET Vauvert - GAL3-5 | Date/heure de fin    | 24/09/2020 15:38:00 |
| Client           | Total - RETIA            | Opérateur(s) RAMBOLL | VDA                 |
| Conditions météo | 25/09/2020               | Vérificateur         | ADE                 |

| CARACTERISTIQUES OUVRAGE   |                               |                             |                |  |  |  |  |  |
|----------------------------|-------------------------------|-----------------------------|----------------|--|--|--|--|--|
| Syst. de coordonnées       | RGF_93                        | Neuf                        |                |  |  |  |  |  |
| х                          | 803575.122                    | Protection de l'ouvrage     | Capot hors sol |  |  |  |  |  |
| Υ                          | 6282733.517                   | Diamètre int. du tube (mm)  | 80             |  |  |  |  |  |
| Identification du repère   | Haut capot métal              | Diamètre du forage (mm)     | 156            |  |  |  |  |  |
| Description du lieu        | Prairie partiellement arborée | Vol./m de colonne d'eau (L) | 7.58           |  |  |  |  |  |
| Altitude du TN (m NGF)     | 1.091                         | Haut crépine (m/rep)        | 3              |  |  |  |  |  |
| Altitude du repère (m NGF) | 1.09                          | Bas crépine (m/rep)         | 6              |  |  |  |  |  |

| OBSERVATIONS AVANT POMPAGE                                |       |                        |             |  |  |  |  |
|-----------------------------------------------------------|-------|------------------------|-------------|--|--|--|--|
| Profondeur ouvrage (m/rep) 6.54 PID à l'ouverture (ppm) 0 |       |                        |             |  |  |  |  |
| Ouvrage sec ?                                             | non   | Altitude nappe (m NGF) | -0.24       |  |  |  |  |
| Niveau statique (m/rep)                                   | 1.33  | Epaisseur LNAPL (m)    | Non observé |  |  |  |  |
| Volume d'eau Vp (L)                                       | 39.49 | Epaisseur DNAPL (m)    | Non observé |  |  |  |  |

| PURGE                                                 |                   |                              |                          |  |  |  |  |  |
|-------------------------------------------------------|-------------------|------------------------------|--------------------------|--|--|--|--|--|
| Statique/dynamique                                    | Statique          | Dénoyage                     | non                      |  |  |  |  |  |
| Equipement utilisé                                    | Pompe Mega Purger | Volume total purgé (L)       | 22.5                     |  |  |  |  |  |
| Num. de la pompe                                      | A3                | Taux de renouvellement       | 0.57                     |  |  |  |  |  |
| Nettoyage pompe                                       | oui               | Stabilisation paramètres φ/χ | oui                      |  |  |  |  |  |
| Position pompe (m/rep)                                | 6                 | Gestion eaux de purge        | Filtration charbon actif |  |  |  |  |  |
| MESURES PHYSICO-CHIMIQUES REALISEES EN COURS DE PURGE |                   |                              |                          |  |  |  |  |  |
| Appareil de mesure                                    | Hanna HI 98194    | Date de calibration          | 11/09/2020               |  |  |  |  |  |

|               | MESURES PHYSICO-CHIMIQUES REALISEES AU COURS DU PRELEVEMENT |                      |                  |               |                  |             |                    |         |         |             |
|---------------|-------------------------------------------------------------|----------------------|------------------|---------------|------------------|-------------|--------------------|---------|---------|-------------|
| Temps<br>(mn) | Vol. purgé<br>(L)                                           | Niv. Dyn.<br>(m/rep) | pH<br>(unité pH) | Temp.<br>(°C) | Cond.<br>(µS/cm) | ORP<br>(mV) | O2 diss.<br>(mg/L) | Couleur | Turbid. | Obs. organ. |
| 18            | 17                                                          | 3.39                 | 6.56             | 18.02         | 3160             | 45.9        | 0                  | Aucune  | Aucune  | Filtration  |
| 21            | 20                                                          | 3.58                 | 6.54             | 18.19         | 3085             | 47.1        | 0                  | Aucune  | Aucune  | Filtration  |
| 24            | 22.5                                                        | 3.58                 | 6.54             | 18.17         | 3079             | 17.2        | 0                  | Aucune  | Aucune  | Filtration  |

QSSE Form 009 - Rev F Page 3/6



| ECHANTILLONNAGE               |    |     |                   |  |  |  |  |  |
|-------------------------------|----|-----|-------------------|--|--|--|--|--|
| Nom de l'échantillon MW2_2009 | 24 |     |                   |  |  |  |  |  |
| Débit de prélèvement (L/min)  |    | 0.5 | Non disponible    |  |  |  |  |  |
| Méthode de prélèvemen         | nt |     | Pompe Mega Purger |  |  |  |  |  |
| Remarque                      |    |     |                   |  |  |  |  |  |

| ECHANTILLONS LIVRES AU LABORATOIRE |            |                |          |            |          |                     |                 |                            |  |
|------------------------------------|------------|----------------|----------|------------|----------|---------------------|-----------------|----------------------------|--|
| Nom d'échantillon                  | Code barre | Type de flacon | Conserv. | Filtration | Analyse  | Laboratoire         | Date<br>d'envoi | Conditions de<br>Transport |  |
| MW2_200924                         | S1088683J  | ALC237         | Aucun    | non        | НАР      | Synlab Laboratories | 25/09/2020      | Glacière<br>réfrigérée     |  |
| MW2_200924                         | G6869333B  | ALC236         | H2SO4    | non        | BTEX HCT | Synlab Laboratories | 25/09/2020      | Glacière<br>réfrigérée     |  |
| MW2_200924                         | G68693308  | ALC236         | H2SO4    | non        | BTEX HCT | Synlab Laboratories | 25/09/2020      | Glacière<br>réfrigérée     |  |
| MW2_200924                         | B19580483  | ALC204         | HNO3     | oui        | Métaux   | Synlab Laboratories | 25/09/2020      | Glacière<br>réfrigérée     |  |

|  | OBSERVATIONS / NOT | ES |  |
|--|--------------------|----|--|
|  |                    |    |  |
|  |                    |    |  |

QSSE Form 009 - Rev F Page 4/6



Nom du point : GAL3-5\_MW3

| Code Projet      | FRTOTMS020-P2            | Date/heure de début  | 24/09/2020 14:34:00 |
|------------------|--------------------------|----------------------|---------------------|
| Site             | TOT-RET Vauvert - GAL3-5 | Date/heure de fin    | 24/09/2020 14:39:00 |
| Client           | Total - RETIA            | Opérateur(s) RAMBOLL | VDA                 |
| Conditions météo | 25/09/2020               | Vérificateur         | ADE                 |

| CARACTERISTIQUES OUVRAGE                      |                               |                             |                |  |  |  |  |  |
|-----------------------------------------------|-------------------------------|-----------------------------|----------------|--|--|--|--|--|
| Syst. de coordonnées RGF_93 Etat de l'ouvrage |                               |                             |                |  |  |  |  |  |
| х                                             | 803438.712                    | Protection de l'ouvrage     | Capot hors sol |  |  |  |  |  |
| Υ                                             | 6282885.587                   | Diamètre int. du tube (mm)  | 80             |  |  |  |  |  |
| Identification du repère                      | Haut capot métal              | Diamètre du forage (mm)     | 156            |  |  |  |  |  |
| Description du lieu                           | Prairie partiellement arborée | Vol./m de colonne d'eau (L) | 7.58           |  |  |  |  |  |
| Altitude du TN (m NGF)                        | 2.668                         | Haut crépine (m/rep)        | 1              |  |  |  |  |  |
| Altitude du repère (m NGF)                    | 2.67                          | Bas crépine (m/rep)         | 7              |  |  |  |  |  |

|                                                           | OBSERVATIONS AVANT POMPAGE |                        |             |  |  |  |  |  |
|-----------------------------------------------------------|----------------------------|------------------------|-------------|--|--|--|--|--|
| Profondeur ouvrage (m/rep) 7.51 PID à l'ouverture (ppm) 0 |                            |                        |             |  |  |  |  |  |
| Ouvrage sec ?                                             | non                        | Altitude nappe (m NGF) | 1.23        |  |  |  |  |  |
| Niveau statique (m/rep)                                   | 1.44                       | Epaisseur LNAPL (m)    | Non observé |  |  |  |  |  |
| Volume d'eau Vp (L)                                       | 46.01                      | Epaisseur DNAPL (m)    | Non observé |  |  |  |  |  |

| PURGE                  |                                                       |                              |                          |  |  |  |  |  |  |
|------------------------|-------------------------------------------------------|------------------------------|--------------------------|--|--|--|--|--|--|
| Statique/dynamique     | Dynamique                                             | Dénoyage                     | non                      |  |  |  |  |  |  |
| Equipement utilisé     | Pompe Mega Purger                                     | Volume total purgé (L)       | 17                       |  |  |  |  |  |  |
| Num. de la pompe       | A3                                                    | Taux de renouvellement       | 0.37                     |  |  |  |  |  |  |
| Nettoyage pompe        | oui                                                   | Stabilisation paramètres φ/χ | oui                      |  |  |  |  |  |  |
| Position pompe (m/rep) | 7                                                     | Gestion eaux de purge        | Filtration charbon actif |  |  |  |  |  |  |
|                        | MESURES PHYSICO-CHIMIQUES REALISEES EN COURS DE PURGE |                              |                          |  |  |  |  |  |  |
| Appareil de mesure     | Hanna HI 98194                                        | Date de calibration          | 11/09/2020               |  |  |  |  |  |  |

|               | MESURES PHYSICO-CHIMIQUES REALISEES AU COURS DU PRELEVEMENT |                      |                  |               |                  |             |                    |         |         |             |
|---------------|-------------------------------------------------------------|----------------------|------------------|---------------|------------------|-------------|--------------------|---------|---------|-------------|
| Temps<br>(mn) | Vol. purgé<br>(L)                                           | Niv. Dyn.<br>(m/rep) | pH<br>(unité pH) | Temp.<br>(°C) | Cond.<br>(µS/cm) | ORP<br>(mV) | O2 diss.<br>(mg/L) | Couleur | Turbid. | Obs. organ. |
| 12            | 12                                                          | 2.79                 | 6.33             | 19.43         | 1728             | 62.7        | 0                  | Aucune  | Aucune  | Filtration  |
| 15            | 14                                                          | 2.92                 | 6.34             | 19.57         | 1735             | 62          | 0                  | Aucune  | Aucune  | Filtration  |
| 18            | 17                                                          | 3.15                 | 6.35             | 19.35         | 1742             | 61.7        | 0                  | Aucune  | Aucune  | Filtration  |

QSSE Form 009 - Rev F Page 5/6



| ECHANTILLONNAGE                                                |                             |  |                   |  |  |
|----------------------------------------------------------------|-----------------------------|--|-------------------|--|--|
| Nom de l'échantillon                                           | de l'échantillon MW3_200924 |  |                   |  |  |
| Débit de prélèvement (L/min) 0.5 Niveau de prélèvement (m/rep) |                             |  | Non disponible    |  |  |
| Méthode de prélèvement                                         |                             |  | Pompe Mega Purger |  |  |
| Remarque                                                       |                             |  |                   |  |  |

| ECHANTILLONS LIVRES AU LABORATOIRE |            |                |          |            |          |                     |                 |                            |
|------------------------------------|------------|----------------|----------|------------|----------|---------------------|-----------------|----------------------------|
| Nom d'échantillon                  | Code barre | Type de flacon | Conserv. | Filtration | Analyse  | Laboratoire         | Date<br>d'envoi | Conditions de<br>Transport |
| MW3_200924                         | S10417413  | ALC237         | Aucun    | non        | НАР      | Synlab Laboratories | 25/09/2020      | Glacière<br>réfrigérée     |
| MW3_200924                         | G6869363E  | ALC236         | H2SO4    | non        | ВТЕХ НСТ | Synlab Laboratories | 25/09/2020      | Glacière<br>réfrigérée     |
| MW3_200924                         | G6869334C  | ALC236         | H2SO4    | non        | ВТЕХ НСТ | Synlab Laboratories | 25/09/2020      | Glacière<br>réfrigérée     |
| MW3_200924                         | B18937905  | ALC204         | HNO3     | oui        | Métaux   | Synlab Laboratories | 25/09/2020      | Glacière<br>réfrigérée     |

|  | OBSERVATIONS / NOT | ES |  |
|--|--------------------|----|--|
|  |                    |    |  |
|  |                    |    |  |

QSSE Form 009 - Rev F Page 6/6

Sites du Languedoc – Rapport sur les investigations et les prélèvements libératoires réalisés sur le site de Gallician 3 et 5 (GAL3 et GAL5)

ANNEXE 4
PHOTOLOG DES SONDAGES – CAMPAGNES DE NOVEMBRE 2019 ET
SEPTEMBRE 2020





Photo 1. Sondage GAL3-5\_S0



Photo 2. Sondage GAL3-5\_S0 rebouché

| Titre: Log | g photographique | Client : | TOTAL - RETIA |
|------------|------------------|----------|---------------|
| Site: GA   | L3-5 (Vauvert)   | Date :   | 10/11/2020    |





Photo 3. Sondage GAL3-5\_S1



Photo 4. Sondage GAL3-5\_S1 rebouché

| Titre: Log photographique | Client : TOTAL - RETIA |
|---------------------------|------------------------|
| Site: GAL3-5 (Vauvert)    | Date: 10/11/2020       |





Photo 5. Sondage GAL3-5\_S2



Photo 6. Sondage GAL3-5\_S2 rebouché

| Titre: Log photographique | Client : TOTAL - RETIA |
|---------------------------|------------------------|
| Site: GAL3-5 (Vauvert)    | Date: 10/11/2020       |





Photo 7. Sondage GAL3-5\_S2bis



Photo 8. Sondage GAL3-5\_S2bis rebouché

| Titre : | Log photographique | Client : TOTAL - RETIA |
|---------|--------------------|------------------------|
| Site :  | GAL3-5 (Vauvert)   | Date: 10/11/2020       |





Photo 9. Sondage GAL3-5\_S3



Photo 10. Sondage GAL3-5\_S3 rebouché

| Titre : | Log photographique | Client: TOTAL - RETIA |
|---------|--------------------|-----------------------|
| Site :  | GAL3-5 (Vauvert)   | Date: 10/11/2020      |





Photo 11. Sondage GAL3-5\_S4



Photo 12. Sondage GAL3-5\_S4 rebouché

| Titre: Log | g photographique | Client : | TOTAL - RETIA |
|------------|------------------|----------|---------------|
| Site: GA   | L3-5 (Vauvert)   | Date :   | 10/11/2020    |





Photo 13. Sondage GAL3-5\_S5



Photo 14. Sondage GAL3-5\_S5 rebouché

| Titre: Log photographique | Client : TOTAL - RETIA |
|---------------------------|------------------------|
| Site: GAL3-5 (Vauvert)    | Date: 10/11/2020       |





Photo 15. Sondage GAL3-5\_S6



Photo 16. Sondage GAL3-5\_S6 rebouché

| Titre: Log photographique | Client : TOTAL - RETIA |
|---------------------------|------------------------|
| Site: GAL3-5 (Vauvert)    | Date: 10/11/2020       |





Photo 17. Sondage GAL3-5\_S8



Sondage GAL3-5\_S8 rebouché

Photo 18.

| Titre : | Log photographique | Client : TOTAL - RETIA |
|---------|--------------------|------------------------|
| Site:   | GAL3-5 (Vauvert)   | Date: 10/11/2020       |





Photo 19. Sondage GAL3-5\_S10



Photo 20. Sondage GAL3-5\_S10 rebouché

| Titre: Log photographique | Client: TOTAL - RETIA |
|---------------------------|-----------------------|
| Site: GAL3-5 (Vauvert)    | Date: 10/11/2020      |





Photo 21. Sondage GAL3-5\_S11



Photo 22. Sondage GAL3-5\_S11 rebouché

| Titre : | Log photographique | Client : TOTAL - RETIA |
|---------|--------------------|------------------------|
| Site :  | GAL3-5 (Vauvert)   | Date: 10/11/2020       |





Photo 23. Sondage GAL3-5\_S12



Photo 24. Sondage GAL3-5\_S12 rebouché

| Titre: Log | g photographique | Client : | TOTAL - RETIA |
|------------|------------------|----------|---------------|
| Site: GA   | L3-5 (Vauvert)   | Date :   | 10/11/2020    |





Photo 25. Sondage GAL3-5\_S13



Photo 26. Sondage GAL3-5\_S13 rebouché

| Titre: Log photographique | Client : TOTAL - RETIA |
|---------------------------|------------------------|
| Site: GAL3-5 (Vauvert)    | Date: 10/11/2020       |





Photo 27. Sondage GAL3-5\_S14



Photo 28. Sondage GAL3-5\_S14 rebouché

| Titre : | Log photographique | Client : TOTAL - RETIA |
|---------|--------------------|------------------------|
| Site:   | GAL3-5 (Vauvert)   | Date: 10/11/2020       |





Photo 29. Sondage GAL3-5\_S15



Photo 30. Sondage GAL3-5\_S15 rebouché

| Titre : | Log photographique | Client : TOTAL - RETIA |
|---------|--------------------|------------------------|
| Site:   | GAL3-5 (Vauvert)   | Date: 10/11/2020       |







Photo 31. Sondage GAL3-5\_T1



Photo 32. Sondage GAL3-5\_T1 rebouché

| Titre: Log photographique | Client : TOTAL - RETIA |
|---------------------------|------------------------|
| Site: GAL3-5 (Vauvert)    | Date: 10/11/2020       |







Photo 33. Sondage GAL3-5\_T2



Photo 34. Sondage GAL3-5\_T2 rebouché

| Titre : | Log photographique | Client: TOTAL - RETIA |
|---------|--------------------|-----------------------|
| Site :  | GAL3-5 (Vauvert)   | Date: 10/11/2020      |





Photo 35. Sondage GAL3-5\_T3



Photo 36. Sondage GAL3-5\_T3 rebouché

| Titre: Log photographique | Client : TOTAL - RETIA |
|---------------------------|------------------------|
| Site: GAL3-5 (Vauvert)    | Date: 10/11/2020       |





Photo 37. Sondage GAL3-5\_T4 (pas de photographie de la tranchée complète



Photo 38. Sondage GAL3-5\_T4 rebouché

| Titre : | Log photographique | Client: TOTAL - RETIA |
|---------|--------------------|-----------------------|
| Site :  | GAL3-5 (Vauvert)   | Date: 10/11/2020      |



Photographie non disponible

Photo 39. Sondage GAL3-5\_T5N



Photo 40. Sondage GAL3-5\_T5N rebouché

| Titre : | Log photographique | Client : TOTAL - RETIA |
|---------|--------------------|------------------------|
| Site :  | GAL3-5 (Vauvert)   | Date: 10/11/2020       |





Photo 41. Sondage GAL3-5\_T5S



Photo 42. Sondage GAL3-5\_T5S rebouché

| Titre : | Log photographique | Client : TOTAL - RETIA |
|---------|--------------------|------------------------|
| Site :  | GAL3-5 (Vauvert)   | Date: 10/11/2020       |





Photo 43. Sondage GAL3-5\_T6N (rebouchage au fur et à mesure, non tenue des parois de la tranchée)



Photo 44. Sondage GAL3-5\_T6N rebouché

| Titre : | Log photographique | Client : TOTAL - RETIA |
|---------|--------------------|------------------------|
| Site :  | GAL3-5 (Vauvert)   | Date: 10/11/2020       |





Photo 45. Sondage GAL3-5\_T6S



Photo 46. Sondage GAL3-5\_T6S rebouché

| Titre: Log photographique | Client : TOTAL - RETIA |
|---------------------------|------------------------|
| Site: GAL3-5 (Vauvert)    | Date: 10/11/2020       |





Photo 47. Sondage GAL3-5\_T7N



Photo 48. Sondage GAL3-5\_T7N rebouché

| Titre : | Log photographique | Client : TOTAL - RETIA |
|---------|--------------------|------------------------|
| Site:   | GAL3-5 (Vauvert)   | Date: 10/11/2020       |





Photo 49. Sondage GAL3-5\_T7S



Photo 50. Sondage GAL3-5\_T7S rebouché

| Titre : | Log photographique | Client : TOTAL - RETIA |
|---------|--------------------|------------------------|
| Site:   | GAL3-5 (Vauvert)   | Date: 10/11/2020       |





Photo 51. Sondage GAL3-5\_T8N (rebouchage au fur et à mesure, non tenue des parois de la tranchée)



Photo 52. Sondage GAL3-5\_T8N rebouché

| Titre : | Log photographique | Client : TOTAL - RETIA |
|---------|--------------------|------------------------|
| Site :  | GAL3-5 (Vauvert)   | Date: 10/11/2020       |





Photo 53. Sondage GAL3-5\_T8S



Photo 54. Sondage GAL3-5\_T8S rebouché

| Titre: Log photographique | Client : TOTAL - RETIA |
|---------------------------|------------------------|
| Site: GAL3-5 (Vauvert)    | Date: 10/11/2020       |





Photo 55. Sondage GAL3-5\_T9N



Photo 56. Sondage GAL3-5\_T9N rebouché

| Titre: Log | g photographique | Client : | TOTAL - RETIA |
|------------|------------------|----------|---------------|
| Site: GA   | L3-5 (Vauvert)   | Date :   | 10/11/2020    |







Photo 57. Sondage GAL3-5\_T9S



Photo 58. Sondage GAL3-5\_T9S rebouché

| Titre : | Log photographique | Client : TOTAL - RETIA |
|---------|--------------------|------------------------|
| Site:   | GAL3-5 (Vauvert)   | Date: 10/11/2020       |





Photo 59. Sondage GAL3-5\_T10N



Photo 60. Sondage GAL3-5\_T10N rebouché

| Titre : | Log photographique | Client : TOTAL - RETIA |
|---------|--------------------|------------------------|
| Site:   | GAL3-5 (Vauvert)   | Date: 10/11/2020       |





Photo 61. Sondage GAL3-5\_T10S



Photo 62. Sondage GAL3-5\_T10S rebouché

| Titre : | Log photographique | Client : TOTAL - RETIA |
|---------|--------------------|------------------------|
| Site:   | GAL3-5 (Vauvert)   | Date: 10/11/2020       |







Photo 63. Piézomètre GAL3-5\_MW1 (0-1.5 m)





Photo 64. Piézomètre GAL3-5\_ MW1 (1.5-3 m)

| Titre : | Log photographique | Client : TOTAL - RETIA |
|---------|--------------------|------------------------|
| Site:   | GAL3-5 (Vauvert)   | Date: 10/11/2020       |







Photo 65. Piézomètre GAL3-5\_MW1 (3-4.5 m)





Photo 66. Piézomètre GAL3-5\_ MW1 (4.5-6 m)

| Titre: Log photographique | Client : TOTAL - RETIA |
|---------------------------|------------------------|
| Site: GAL3-5 (Vauvert)    | Date: 10/11/2020       |







Photo 67. Piézomètre GAL3-5\_ MW1 (6-7 m)



Photo 68. Piézomètre GAL3-5\_ MW1

| Titre : | Log photographique | Client : TOTAL - RETIA |
|---------|--------------------|------------------------|
| Site:   | GAL3-5 (Vauvert)   | Date: 10/11/2020       |







Photo 69. Piézomètre GAL3-5\_MW2 (0-1.5 m)





Photo 70. Piézomètre GAL3-5\_ MW2 (1.5-3 m)

| Titre : | Log photographique | Client : | TOTAL - RETIA |
|---------|--------------------|----------|---------------|
| Site :  | GAL3-5 (Vauvert)   | Date :   | 10/11/2020    |







Photo 71. Piézomètre GAL3-5\_ MW2 (3-4 m)





Photo 72. Piézomètre GAL3-5\_ MW2 (4-5 m)

| Titre: Log | g photographique | Client : | TOTAL - RETIA |
|------------|------------------|----------|---------------|
| Site: GA   | L3-5 (Vauvert)   | Date :   | 10/11/2020    |







Photo 73. Piézomètre GAL3-5\_ MW12(5-6 m)



Photo 74. Piézomètre GAL3-5\_ MW2

| Titre: Log photographique | Client : TOTAL - RETIA |
|---------------------------|------------------------|
| Site: GAL3-5 (Vauvert)    | Date: 10/11/2020       |





Photo 75. Piézomètre GAL3-5\_MW3 (0-1.5 m)



Photo 76. Piézomètre GAL3-5\_ MW3 (1.5-2.5 m)

| Titre: Log | g photographique | Client : | TOTAL - RETIA |
|------------|------------------|----------|---------------|
| Site: GA   | L3-5 (Vauvert)   | Date :   | 10/11/2020    |





Photo 77. Piézomètre GAL3-5\_ MW3 (2.5-4 m)





Photo 78. Piézomètre GAL3-5\_ MW3 (4-5 m)

| Titre: Log photographique | Client : TOTAL - RETIA |
|---------------------------|------------------------|
| Site: GAL3-5 (Vauvert)    | Date: 10/11/2020       |





Photo 79. Piézomètre GAL3-5\_ MW3 (5-6 m)





Photo 80. Piézomètre GAL3-5\_ MW3 (6-7 m)

| Titre : | Log photographique | Client : | TOTAL - RETIA |
|---------|--------------------|----------|---------------|
| Site :  | GAL3-5 (Vauvert)   | Date :   | 10/11/2020    |





Photo 81. Piézomètre GAL3-5\_ MW3

| Titre : | Log photographique | Client : TOTAL - RETIA |
|---------|--------------------|------------------------|
| Site :  | GAL3-5 (Vauvert)   | Date: 10/11/2020       |





Photo 1. Piézomètre GAL3-5\_MW1



Photo 2. Piézomètre GAL3-5\_MW1 (flacons)

| Titre : | Log photographique | Client : TOTAL - RETIA |
|---------|--------------------|------------------------|
| Site :  | GAL3-5 (Vauvert)   | Date: 10/11/2020       |





Photo 3. Piézomètre GAL3-5\_MW2



Photo 4. Piézomètre GAL3-5\_MW2 (flacons)

| Titre: Log photographique | Client : TOTAL - RETIA |
|---------------------------|------------------------|
| Site: GAL3-5 (Vauvert)    | Date: 10/11/2020       |





Photo 5. Piézomètre GAL3-5\_MW3



Photo 6. Piézomètre GAL3-5\_MW3

| Titre: Log photographique | Client : TOTAL - RETIA |
|---------------------------|------------------------|
| Site: GAL3-5 (Vauvert)    | Date: 10/11/2020       |





Photo 7. Piézomètre GAL3-5\_MWB – Blanc (flacons)

| Titre : | Log photographique | Client : TOTAL - RETIA |
|---------|--------------------|------------------------|
| Site :  | GAL3-5 (Vauvert)   | Date: 10/11/2020       |

Sites du Languedoc – Rapport sur les investigations et les prélèvements libératoires réalisés sur le site de Gallician 3 et 5 (GAL3 et GAL5)

ANNEXE 5
COORDONNEES DES SONDAGES (LAMBERT 93) – CAMPAGNES DE NOVEMBRE 2019 ET SEPTEMBRE 2020

| Ouvrago                 | Х          | Υ           | Z     |
|-------------------------|------------|-------------|-------|
| Ouvrage                 | Lamb       | Lambert 93  |       |
| GAL3-5_S0               | 803426,535 | 6282878,09  | 2,157 |
| GAL3-5_S1               | 803508,383 | 6282768,963 | 1,151 |
| GAL3-5_S2               | 803495,07  | 6282786,651 | 1,231 |
| GAL3-5_S2bis            | 803490,871 | 6282792,475 | 1,371 |
| GAL3-5_S3               | 803500,069 | 6282813,1   | 1,521 |
| GAL3-5_S4               | 803458,729 | 6282836,983 | 1,439 |
| GAL3-5_S5               | 803479,8   | 6282850,9   | 1,759 |
| GAL3-5_S6               | 803463,274 | 6282891,527 | 1,997 |
| GAL3-5_S8               | 803554,995 | 6282799,062 | 0,871 |
| GAL3-5_S10              | 803505,8   | 6282772,249 | 1,243 |
| GAL3-5_S11              | 803511,926 | 6282769,404 | 1,202 |
| GAL3-5_S12              | 803510,167 | 6282764,337 | 1,24  |
| GAL3-5_S13              | 803504,283 | 6282765,56  | 1,29  |
| GAL3-5_S14              | 803523,817 | 6282725,643 | 0,575 |
| GAL3-5_S15              | 803566,149 | 6282751,234 | 0,816 |
| GAL3-5_MW1 (bord PE)    | 803516,886 | 6282752,968 | 1,557 |
| GAL3-5_MW1 (bord capot) | 803516,988 | 6282753.00  | 1,629 |
| GAL3-5_MW2 (bord PE)    | 803575,044 | 6282733,569 | 1,011 |
| GAL3-5_MW2 (bord capot) | 803575,122 | 6282733,517 | 1,091 |
| GAL3-5_MW3 (bord PE)    | 803438,703 | 6282885,678 | 2,638 |
| GAL3-5_MW3 (bord capot) | 803438,712 | 6282885,587 | 2,668 |
| Puits privée (centre)   | 803531,77  | 6282793,57  | 2,17  |

| Ouvrago     | Х          | Υ           | Z     |
|-------------|------------|-------------|-------|
| Ouvrage     | Lamb       | ert 93      | m NGF |
|             | 803484,926 | 6282801,456 | 1,52  |
|             | 803485,422 | 6282801,845 | 1,535 |
| GAL3-5_T1   | 803493,848 | 6282789,705 | 1,329 |
|             | 803493,387 | 6282789,301 | 1,324 |
|             | 803496,672 | 6282790,016 | 1,344 |
|             | 803497,023 | 6282789,543 | 1,269 |
| GAL3-5_T2   |            |             |       |
|             | 803509,027 | 6282798,413 | 1,366 |
|             | 803508,688 | 6282798,929 | 1,404 |
|             | 803496,54  | 6282786,876 | 1,27  |
| GAL3-5_T3   | 803496,018 | 6282786,572 | 1,304 |
|             | 803504,571 | 6282774,101 | 1,217 |
|             | 803505,088 | 6282774,421 | 1,223 |
|             | 803491,914 | 6282786,241 | 1,402 |
| GAL3-5_T4   | 803491,524 | 6282786,734 | 1,356 |
| GAL3-5_14   | 803479,687 | 6282779,74  | 1,212 |
|             | 803480,012 | 6282779,245 | 1,171 |
|             | 803520,484 | 6282748,604 | 0,839 |
|             | 803520,982 | 6282748,983 | 0,814 |
| GAL3-5_T5N  | 803523,272 | 6282745,841 | 0,632 |
|             | 803522,787 | 6282745,498 | 0,68  |
|             | 803525,263 | 6282742,877 | 0,607 |
|             | 803524,74  | 6282742,519 | 0,607 |
| GAL3-5_T5T  |            |             |       |
|             | 803531,089 | 6282734,421 | 0,49  |
|             | 803531,528 | 6282734,862 | 0,532 |
|             | 803532,001 | 6282733,477 | 0,523 |
| GAL3-5_T6N  | 803532,489 | 6282733,837 | 0,612 |
| - · · -     | 803536,4   | 6282727,693 | 0,623 |
|             | 803535,902 | 6282727,356 | 0,596 |
|             | 803540,032 | 6282723,651 | 0,692 |
| GAL3-5_T6T  | 803539,432 | 6282723,36  | 0,676 |
| GAL3-3_101  | 803540,832 | 6282720,88  | 0,537 |
|             | 803541,423 | 6282721,146 | 0,529 |
|             | 803536,584 | 6282753,057 | 0,839 |
| CALOF TAN   | 803536,049 | 6282752,726 | 0,837 |
| GAL3-5_T7N  | 803534,574 | 6282754,066 | 0,843 |
|             | 803535,028 | 6282754,439 | 0,831 |
|             | 803545,019 | 6282742,102 | 0,517 |
|             | 803545,547 | 6282742,405 | 0,518 |
| GAL3-5_T7T  | 803539,484 | 6282750,142 | 0,527 |
|             | 803538,967 | 6282749,79  | 0,574 |
|             | 803551,325 | 6282732,745 |       |
|             |            |             | 0,534 |
| GAL3-5_T8N  | 803551,821 | 6282733,078 | 0,49  |
|             | 803545,971 | 6282741,037 | 0,6   |
|             | 803545,468 | 6282740,667 | 0,57  |
|             | 803555,165 | 6282726,977 | 0,515 |
| GAL3-5_T8T  | 803554,593 | 6282726,779 | 0,49  |
|             | 803553,534 | 6282729,369 | 0,626 |
|             | 803554,08  | 6282729,675 | 0,613 |
|             | 803546,631 | 6282763,04  | 0,857 |
| GAL3-5_T9N  | 803547,153 | 6282763,356 | 0,903 |
| OME3-3_1310 | 803548,358 | 6282761,398 | 0,78  |
|             | 803547,842 | 6282761,053 | 0,781 |
|             | 803550,349 | 6282759,144 | 0,645 |
| 0410 5 707  | 803549,851 | 6282758,767 | 0,663 |
| GAL3-5_T9T  | 803555,354 | 6282750,367 | 0,592 |
|             | 803555,751 | 6282750,73  | 0,607 |
|             | 803559,271 | 6282744,85  | 0,511 |
|             | 803559,794 | 6282745,197 | 0,531 |
| GAL3-5_T10N | 803564,43  | 6282738,028 | 0,602 |
|             |            |             |       |
|             | 803563,876 | 6282737,702 | 0,683 |
|             | 803565,633 | 6282734,518 | 0,671 |
| GAL3-5_T10T | 803566,157 | 6282734,805 | 0,586 |
|             | 803567,546 | 6282731,711 | 0,503 |
|             | 803567,012 | 6282731,448 | 0,55  |



| Sites du Languedoc –   | Rapport sur les | investigations et | les prélèvements | libératoires | réalisés sur | · le site |
|------------------------|-----------------|-------------------|------------------|--------------|--------------|-----------|
| de Gallician 3 et 5 (G | AL3 et GAL5)    |                   |                  |              |              |           |

ANNEXE 6
PROGRAMME ANALYTIQUE DES SOLS – CAMPAGNE DE NOVEMBRE 2019
ET SEPTEMBRE 2020

|                | 1                        |                                        | Analyses                               |                                        |                                        |           |             |                                        |           |                                         |                   |
|----------------|--------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|-----------|-------------|----------------------------------------|-----------|-----------------------------------------|-------------------|
| Date           | Ouvrage                  | Infos                                  | Profondeur<br>de<br>prélèvement<br>(m) | ВТЕХ                                   | НАР                                    | HC C5-C10 | HCT C10-C40 | 8 métaux                               | Pack ISDI | Analyse dans<br>un autre<br>laboratoire | Mis en<br>attente |
|                | GAL3-5_S0                | Prof. 1.5 m                            | 0-1.5                                  | Χ                                      | Χ                                      | Χ         | Χ           | Χ                                      |           |                                         |                   |
|                | GAL3-5_S1                | Prof. 1.2 m                            | 0-0.3                                  | X                                      | Х                                      | X         | Х           | X                                      |           |                                         |                   |
|                |                          | •                                      | 0.3-1<br>0-0.6                         | X<br>X                                 | X<br>X                                 | X<br>X    | X<br>X      | X<br>X                                 |           |                                         |                   |
| _              | GAL3-5_S2                | Prof. 1.3 m                            | 0.6-1                                  | ^<br>X                                 | ^<br>X                                 | ^         | ^<br>X      | ^<br>X                                 | X         |                                         |                   |
| Novembre 2019  | GAL3-5_S2bis             | Prof. 1.5 m                            | 0-1.1                                  | X                                      | X                                      | X         | X           | X                                      |           |                                         |                   |
| bre            |                          |                                        | 1.1-1.3                                | Χ                                      | X                                      | Х         | X           | X                                      | Х         |                                         |                   |
| /em            | GAL3-5_S3                | Prof. 1 m                              | 0-1<br>0-3                             | X                                      | X                                      | X         | X           | X                                      |           |                                         |                   |
| No.            | GAL3-5_S4                | Prof. 3 m                              | 0-0.4                                  | X                                      | X                                      | X         | X           | X                                      |           |                                         |                   |
|                | GAL3-5_S5                | Prof. 1.4 m                            | 0.4-0.9                                | Χ                                      | Χ                                      | Х         | Χ           | Χ                                      |           |                                         |                   |
|                | GAL3-5_S6                | Prof. 2 m                              | 0-1.5                                  | Х                                      | Χ                                      | Χ         | Χ           | Х                                      |           |                                         |                   |
|                | GAL3-5_S8                | Prof. 1.7 m                            | 0-0.7<br>0.7-1.5                       | X                                      | X                                      | X         | X           | X                                      |           |                                         |                   |
|                | GAL3-5_S10               | Prof. 1.9 m                            | 0.7-1.3                                | ^                                      | X                                      | ^         | ^           | ^                                      |           |                                         |                   |
|                | GAL3-5_S11               | Prof. 1.8 m                            | 0.3-0.8                                |                                        | Χ                                      |           |             |                                        |           |                                         |                   |
|                | GAL3-3_311               | FIOI. I.O III                          | 1.3-1.5                                |                                        | Х                                      |           |             |                                        |           |                                         |                   |
|                | GAL3-5_S12               | Prof. 1.8 m                            | 0.4-1<br>1-1.3                         |                                        | X                                      |           |             |                                        |           |                                         |                   |
|                | CALDECAD                 | D 1 0                                  | 0.1-0.5                                |                                        | X                                      |           |             |                                        |           |                                         |                   |
|                | GAL3-5_S13               | Prof. 1.8 m                            | 0.5-1                                  |                                        | Х                                      |           |             |                                        |           |                                         |                   |
|                | GAL3-5_S14               | Prof. 1.5 m                            | 0-0.3                                  | ······································ | ······································ | X         | X           | ······································ |           |                                         |                   |
|                |                          |                                        | 0.3-1<br>0.8-1.1                       | Х                                      | Х                                      | X         | Х           | Х                                      |           | -                                       | Х                 |
|                | GAL3-5_S15               | Prof. 2.4 m                            | 1.6-2.2                                | X                                      | X                                      | Х         | Х           | X                                      |           |                                         |                   |
|                |                          |                                        | 2.2-2.4                                | Χ                                      | Χ                                      | Χ         | Х           | Χ                                      |           |                                         |                   |
|                |                          | Partie nord de la tranchée             | 0.9-1.2                                | Χ                                      | Х                                      | Х         | Х           | Χ                                      |           |                                         |                   |
|                | GAL3-5_T1                | Partie sud de la tranchée              | 0.4-0.6<br>0.6-0.9                     | X                                      | X                                      | X         | X<br>X      | X                                      |           |                                         |                   |
|                |                          | rante sad de la transfice              | 0.9-1.2                                | X                                      | X                                      | X         | X           | X                                      | Х         |                                         |                   |
|                |                          | Partie est de la tranchée              | 1-1.5                                  | Χ                                      | Χ                                      | Х         | Х           | Χ                                      |           |                                         |                   |
|                | GAL3-5_T2                | Partie ouest de la tranchée            | 0.7-1                                  |                                        |                                        |           |             |                                        |           |                                         | Х                 |
|                |                          |                                        | 1-1.5<br>0.4-0.6                       | Х                                      | Х                                      | Х         | Х           | Х                                      |           |                                         |                   |
|                | GAL3-5_T3                | Partie nord de la tranchée             | 0.8-1.1                                | X                                      | Χ                                      | Χ         | Χ           | X                                      |           |                                         |                   |
|                |                          | Partie sud de la tranchée              | 0.8-1.1                                | Х                                      | Χ                                      | Х         | Х           | Х                                      |           |                                         |                   |
|                | 04105 74                 | Partie est de la tranchée              | 0.3-0.5                                |                                        |                                        |           | X           |                                        |           |                                         |                   |
|                | GAL3-5_T4                | Partie ouest de la tranchée            | 1-1.2<br>1-1.2                         | X                                      | X                                      | X         | X           | X                                      |           |                                         |                   |
|                |                          |                                        | 0.3-0.7                                |                                        |                                        | Α         |             |                                        |           |                                         | Х                 |
|                | GAL3-5_T5                | Partie nord de la tranchée             | 1.1-1.6                                | Х                                      | Х                                      | Х         | Х           | Х                                      |           |                                         |                   |
|                | 0/120 0_10               | Partie sud de la tranchée (bourbier)   | 0.4-0.6                                |                                        |                                        | X         |             |                                        |           |                                         | Х                 |
| Septembre 2020 |                          |                                        | 0.9-1.5<br>0.4-1                       | Х                                      | Х                                      | λ         | Х           | Х                                      |           |                                         | Х                 |
| ore.           |                          | Partie nord de la tranchée (bourbier)  | 1-1.2                                  | X                                      | X                                      | X         | X           | X                                      |           |                                         |                   |
| emk            | GAL3-5_T6                |                                        | 1.7-2                                  |                                        |                                        |           |             |                                        |           |                                         |                   |
| Sept           |                          | Partie sud de la tranchée              | 0.3-1<br>1-1.3                         | X                                      | X                                      | Х         | X           | X                                      |           |                                         |                   |
|                |                          |                                        | 0-0.5                                  | X                                      | X                                      | X         | X           | X                                      | Х         |                                         |                   |
|                |                          | Partie nord de la tranchée             | 1.6-1.8                                | Χ                                      | Χ                                      | X         | Χ           | Χ                                      |           |                                         |                   |
|                | GAL3-5_T7                | 2                                      | 0.3-0.6                                |                                        |                                        |           |             |                                        |           |                                         | X                 |
|                |                          | Partie sud de la tranchée (bourbier)   | 0.6-1<br>1.4-1.6                       | X                                      | X                                      | XX        | XX          | X                                      |           |                                         | X                 |
|                |                          | Portio pord do la transhée (haustitus) | 0.3-0.7                                |                                        |                                        |           |             |                                        |           |                                         | X                 |
|                |                          | Partie nord de la tranchée (bourbier)  | 1.1-1.6                                | Х                                      | Х                                      | Х         | Χ           | Х                                      |           |                                         |                   |
|                | GAL3-5_T8                | Partie sud de la tranchée              | 0.2-0.7                                | v                                      | v                                      | v         | v           | v                                      |           |                                         | X                 |
|                |                          | rai de suu de la trafichee             | 1.1-1.3<br>1.3-1.5                     | X                                      | X                                      | X         | X           | X                                      |           |                                         | X                 |
| I              |                          |                                        | 0-0.1                                  |                                        |                                        |           | Х           |                                        |           |                                         |                   |
| I              |                          | Partie nord de la tranchée             | 0.1-0.4                                | X                                      | X                                      | Х         | X           | X                                      |           |                                         |                   |
| I              | GAL3-5_T9                |                                        | 1.7-1.9<br>0.1-0.4 (pur)               | X                                      | X                                      | X         | X           | X                                      |           | Х                                       |                   |
| I              | 5, 25 5_17               |                                        | 0.1-0.4 (pul)<br>0.3-0.6               |                                        |                                        |           |             |                                        |           |                                         | Х                 |
|                |                          | Partie sud de la tranchée (bourbier)   | 1.4-1.7                                | Χ                                      | X                                      | Х         | X           | Χ                                      |           |                                         |                   |
|                |                          |                                        | 1.7-2                                  |                                        |                                        |           |             |                                        |           |                                         | X                 |
|                |                          | Partie nord de la tranchée (bourbier)  | 0.3-1<br>1.6-1.8                       | X                                      | X                                      | X         | X           | X                                      |           |                                         | X                 |
|                | GAL3-5_T10               |                                        | 1.8-2                                  |                                        |                                        |           |             |                                        |           |                                         | Χ                 |
| I              | GML3-0_110               |                                        | 0.4-1.1                                |                                        |                                        |           |             |                                        |           |                                         | X                 |
| I              |                          | Partie sud de la tranchée              | 1.4-1.6<br>2-2.3                       | X                                      | Х                                      | Х         | X           | X                                      |           |                                         | X                 |
| I              |                          |                                        | 0.4-0.9                                | Х                                      | Х                                      | Х         | Х           | Х                                      |           |                                         | ^                 |
|                | GAL3-5_MW1               | Prof. 7 m                              | 0.9-1.5                                | Χ                                      | Х                                      | Х         | Χ           | Х                                      |           |                                         |                   |
|                | 04105                    | 5.5                                    | 1.5-1.8                                | X                                      | Х                                      | Х         | Х           | X                                      |           |                                         |                   |
|                | GAL3-5_MW2<br>GAL3-5_MW3 | Prof. 6 m<br>Prof. 7 m                 | -                                      |                                        |                                        |           |             |                                        |           | -                                       |                   |
|                | OUF9-9-INIMA             |                                        |                                        |                                        | i                                      | J         |             | 1                                      | L         |                                         |                   |

| Sites du Languedoc - Rapport sur le | s investigations et les | prélèvements | libératoires | réalisés sur l | e site |
|-------------------------------------|-------------------------|--------------|--------------|----------------|--------|
| de Gallician 3 et 5 (GAL3 et GAL5)  |                         |              |              |                |        |

ANNEXE 7
BORDEREAUX ANALYTIQUES DES SOLS – LABORATOIRE SYNLAB



## Rapport d'analyse

#### SYNLAB Analytics & Services B.V.

Adresse de correspondance 99-101 avenue Louis Roche · F-92230 Gennevilliers Tel.: +33 (0)155 90 52 50 · Fax: +33 (0)155 90 52 51 www.synlab.fr

Page 1 sur 25

RAMBOLL FRANCE Vincent DAMART Immeuble Le Cézanne 155 rue de Broglie F-13100 AIX-EN-PROVENCE

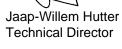
Votre nom de Projet : FRTOTMS020 Sol\_nov2019 GAL3-5

Votre référence de Projet : FRTOTMS020

Référence du rapport SYNLAB : 13154549, version: 1.

Rotterdam, 07-12-2019

Cher(e) Madame/ Monsieur,


Ce rapport contient les résultats des analyses effectuées pour votre projet FRTOTMS020. Les analyses ont été réalisées en accord avec votre commande. Les résultats rapportés se réfèrent uniquement aux échantillons analysés. Le rapport reprend les descriptions des échantillons, la date de prélèvement (si fournie), le nom de projet et les analyses que vous avez indiqués sur le bon de commande.

Ce rapport est constitué de 25 pages dont chromatogrammes si prévus, références normatives, informations sur les échantillons. Dans le cas d'une version 2 ou plus élevée, toute version antérieure n'est pas valable. Toutes les pages font partie intégrante de ce rapport, et seule une reproduction de l'ensemble du rapport est autorisée.

En cas de questions et/ou remarques concernant ce rapport, nous vous prions de contacter notre Service Client.

Toutes les analyses sont réalisées par SYNLAB Analytics & Services B.V., Steenhouwerstraat 15, Rotterdam, Pays Bas. Les analyses sous-traitées ou celles réalisées par les laboratoires SYNLAB en France (99-101 Avenue Louis Roche, Gennevilliers, France) sont indiquées sur le rapport.

Veuillez recevoir, Madame/ Monsieur, l'expression de nos cordiales salutations.







Matrice

Code

RAMBOLL FRANCE
Vincent DAMART

Page 2 sur 25

Rapport d'analyse

Projet FRTOTMS020 Sol\_nov2019 GAL3-5 Date de commande 27-11-2019

Réf. échantillon

 Référence du projet
 FRTOTMS020
 Date de début
 28-11-2019

 Réf. du rapport
 13154549
 - 1
 Rapport du
 07-12-2019

| 002 S<br>003 S<br>004 S                                                                                                 | Sol         G.           Sol         G.           Sol         G. | AL3-5_S1<br>AL3-5_S1<br>AL3-5_S2 | (0-1.5)_201119<br>(0-0.3)_211119<br>(0.3-1)_211119<br>(0-0.6)_211119<br>(0.6-1)_211119 |              |              |              |        |
|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------|--------------|--------------|--------------|--------|
| Analyse  Analyse  matière sèche  COT  CH (KCI) empérature po  METAUX arsenic cadmium chrome cuivre mercure plomb nickel | Sol         G           Sol         G           Sol         G    | AL3-5_S1<br>AL3-5_S2             | (0.3-1)_211119<br>(0-0.6)_211119                                                       |              |              |              |        |
| Analyse  Matière sèche  COT  CH (KCI)  Dempérature po  METAUX  arsenic  cadmium  chrome  cuivre  mercure  plomb  nickel | Sol G.                                                           | AL3-5_S2                         | (0-0.6)_211119                                                                         |              |              |              |        |
| Analyse  matière sèche  COT  OH (KCI) empérature po  METAUX arsenic cadmium chrome cuivre mercure plomb nickel          | Sol G.                                                           |                                  |                                                                                        |              |              |              |        |
| matière sèche COT  pH (KCI) température po METAUX arsenic cadmium chrome cuivre mercure plomb nickel                    | Unité                                                            |                                  |                                                                                        |              |              |              |        |
| COT  bH (KCI) température po  METAUX tarsenic cadmium chrome cuivre mercure plomb nickel                                |                                                                  | Q                                | 001                                                                                    | 002          | 003          | 004          | 005    |
| bH (KCI)  mempérature po  metaux  mersenic  medium  chrome  cuivre  mercure  plomb  nickel                              | % massiq                                                         | ue Q                             | 87.7                                                                                   | 78.8         | 73.8         | 79.0         | 70.2   |
| empérature pour<br>METAUX<br>arsenic<br>cadmium<br>chrome<br>cuivre<br>mercure<br>plomb<br>nickel                       | mg/kg MS                                                         | S Q                              |                                                                                        |              |              |              | 17000  |
| METAUX  arsenic cadmium chrome cuivre mercure plomb nickel                                                              | -                                                                | Q                                |                                                                                        |              |              |              | 9.6    |
| arsenic<br>cadmium<br>chrome<br>cuivre<br>mercure<br>blomb<br>nickel                                                    | our mes. pH °C                                                   |                                  |                                                                                        |              |              |              | 20.5   |
| cadmium<br>chrome<br>cuivre<br>nercure<br>olomb<br>nickel                                                               |                                                                  |                                  |                                                                                        |              |              |              |        |
| chrome<br>cuivre<br>mercure<br>blomb<br>nickel                                                                          | mg/kg MS                                                         |                                  | 10                                                                                     | 20           | 52           | 16           | 15     |
| cuivre<br>mercure<br>olomb<br>nickel                                                                                    | mg/kg MS                                                         |                                  | <0.2                                                                                   | <0.2         | 0.60         | 0.25         | 0.25   |
| mercure<br>blomb<br>nickel                                                                                              | mg/kg MS                                                         |                                  | 60                                                                                     | 39           | 30           | 38           | 42     |
| olomb<br>nickel                                                                                                         | mg/kg MS                                                         |                                  | 40                                                                                     | 21           | 110          | 69           | 42     |
| nickel                                                                                                                  | mg/kg MS                                                         |                                  | <0.05                                                                                  | <0.05        | 0.36         | 0.68         | 0.07   |
|                                                                                                                         | mg/kg MS                                                         |                                  | 14                                                                                     | 27           | 120          | 76           | 54     |
| zinc                                                                                                                    | mg/kg MS                                                         |                                  | 36                                                                                     | 32           | 32           | 30           | 34     |
|                                                                                                                         | mg/kg MS                                                         | 3 Q                              | 33                                                                                     | 65           | 300          | 100          | 130    |
|                                                                                                                         | AROMATIQUES VOLATILS                                             |                                  |                                                                                        |              |              |              |        |
| benzène                                                                                                                 | mg/kg MS                                                         |                                  | <0.02                                                                                  | <0.02        | 0.26         | 0.02         |        |
| oenzène                                                                                                                 | mg/kg MS                                                         |                                  |                                                                                        |              |              |              | < 0.05 |
| oluène                                                                                                                  | mg/kg MS                                                         |                                  | <0.02                                                                                  | <0.02        | 0.29         | 0.04         |        |
| oluène                                                                                                                  | mg/kg MS                                                         |                                  |                                                                                        |              |              |              | 0.08   |
| éthylbenzène                                                                                                            | mg/kg MS                                                         |                                  | <0.02                                                                                  | <0.02        | 0.02         | <0.02        |        |
| éthylbenzène                                                                                                            | mg/kg MS                                                         |                                  |                                                                                        |              |              |              | 0.07   |
| orthoxylène                                                                                                             | mg/kg MS                                                         |                                  | <0.02                                                                                  | <0.02        | 0.04         | <0.02        |        |
| orthoxylène                                                                                                             | mg/kg MS                                                         |                                  | 0.00                                                                                   | 0.00         | 0.40         | 0.04         | <0.05  |
| oara- et métax                                                                                                          |                                                                  |                                  | <0.02                                                                                  | <0.02        | 0.12         | 0.04         | 2.1    |
| oara- et métax                                                                                                          |                                                                  |                                  | -0.04                                                                                  | -0.04        | 0.40         | 0.04         | 0.14   |
| kylènes<br>kylènes                                                                                                      | mg/kg MS                                                         |                                  | <0.04                                                                                  | <0.04        | 0.16         | 0.04         | 0.44   |
| kylènes                                                                                                                 | mg/kg MS                                                         |                                  | -0.10                                                                                  | -0.10        | 0.72         | 0.40         | 0.14   |
| BTEX totaux<br>BTEX totaux                                                                                              | mg/kg MS<br>mg/kg MS                                             |                                  | <0.10                                                                                  | <0.10        | 0.73         | 0.10         | 0.29   |
| HVDROCARR                                                                                                               | BURES AROMATIQUES PO                                             |                                  | IES                                                                                    |              |              |              |        |
| naphtalène                                                                                                              | mg/kg MS                                                         |                                  | √2.01                                                                                  | 0.04         | 0.57         | <0.01        |        |
| naphtalène                                                                                                              | mg/kg MS                                                         |                                  | <b>\U.U1</b>                                                                           | 0.04         | 0.31         | <b>\0.01</b> | 0.37   |
| iapritalerie<br>acénaphtylène                                                                                           |                                                                  |                                  | <0.01                                                                                  | <0.01        | <0.08 1)     | <0.01        | 0.37   |
| acenaphtylène<br>acénaphtylène                                                                                          |                                                                  |                                  | <b>\U.U1</b>                                                                           | <b>\0.01</b> | <b>\0.00</b> | <b>\0.01</b> | 0.02   |
| acenaphtène<br>acénaphtène                                                                                              | mg/kg MS                                                         |                                  | <0.01                                                                                  | <0.01        | <0.08 1)     | <0.01        | 0.02   |
| acénaphtène                                                                                                             |                                                                  |                                  | <b>\0.01</b>                                                                           | <b>\0.01</b> | <b>~0.00</b> | <b>\0.01</b> | <0.02  |
| luorène                                                                                                                 | ma/ka MS                                                         | 1 1.7                            |                                                                                        |              |              |              |        |
| luorène                                                                                                                 | mg/kg MS<br>mg/kg MS                                             |                                  | <0.01                                                                                  | <0.01        | <0.08 1)     | <0.01        |        |







RAMBOLL FRANCE Page 3 sur 25 Rapport d'analyse Vincent DAMART

Projet FRTOTMS020 Sol\_nov2019 GAL3-5

Référence du projet FRTOTMS020 Réf. du rapport 13154549 - 1

mg/kg MS

mg/kg MS Q

Q

Q

Q

Q

Q

Q

<0.01

<0.01

<0.01

<0.16

Date de commande 27-11-2019 Date de début 28-11-2019 Rapport du 07-12-2019

| Code       | Matrice    | Réf      | . échant | illon         |      |      |       |      |
|------------|------------|----------|----------|---------------|------|------|-------|------|
| 001        | Sol        | GA       | L3-5_S0( | 0-1.5)_201119 |      |      |       |      |
| 002        | Sol        | GA       | L3-5_S1( | 0-0.3)_211119 |      |      |       |      |
| 003        | Sol        | GA       | L3-5_S1( | 0.3-1)_211119 |      |      |       |      |
| 004        | Sol        | GA       | L3-5_S2( | 0-0.6)_211119 |      |      |       |      |
| 005        | Sol        | GA       | L3-5_S2( |               |      |      |       |      |
| Analyse    |            | Unité    | Q        | 001           | 002  | 003  | 004   | 005  |
| phénanthr  | ène        | mg/kg MS | Q        | <0.01         | 0.10 | 4.0  | <0.01 |      |
| phénanthr  | ène        | mg/kg MS | Q        |               |      |      |       | 0.27 |
| anthracèn  | е          | mg/kg MS | Q        | <0.01         | 0.02 | 0.70 | <0.01 |      |
| anthracèn  | е          | mg/kg MS | Q        |               |      |      |       | 0.06 |
| fluoranthè | ne         | mg/kg MS | Q        | 0.01          | 0.22 | 11   | <0.01 |      |
| fluoranthè | ne         | mg/kg MS | Q        |               |      |      |       | 0.16 |
| pyrène     |            | mg/kg MS | Q        | <0.01         | 0.21 | 10   | <0.01 |      |
| pyrène     |            | mg/kg MS | Q        |               |      |      |       | 0.19 |
| benzo(a)a  |            | mg/kg MS | Q        | <0.01         | 0.16 | 9.3  | <0.01 |      |
| benzo(a)a  | nthracène  | mg/kg MS | Q        |               |      |      |       | 0.11 |
| chrysène   |            | mg/kg MS | Q        | <0.01         | 0.15 | 10   | <0.01 |      |
| chrysène   |            | mg/kg MS | Q        |               |      |      |       | 0.08 |
| . ,        | uoranthène | mg/kg MS | Q        | <0.01         | 0.21 | 12   | <0.01 |      |
| . ,        | uoranthène | mg/kg MS | Q        |               |      |      |       | 0.15 |
| ` '        | uoranthène | mg/kg MS | Q        | <0.01         | 0.11 | 6.0  | <0.01 |      |
| ( )        | uoranthène | mg/kg MS | Q        |               |      |      |       | 0.07 |
| benzo(a)p  | yrène      | mg/kg MS | Q        | <0.01         | 0.17 | 10   | <0.01 |      |

0.07

0.22

0.20

1.9

3.3

9.7

9.8

97

<0.01

< 0.01

<0.01

<0.16

| Somme des HAP (16) - EPA          | mg/kg MS | Q |     |     |     |     | 1.9              |
|-----------------------------------|----------|---|-----|-----|-----|-----|------------------|
| POLYCHLOROBIPHENYLS (I            | PCB)     |   |     |     |     |     |                  |
| PCB 28                            | μg/kg MS | Q |     |     |     |     | <1               |
| PCB 52                            | μg/kg MS | Q |     |     |     |     | <1               |
| PCB 101                           | μg/kg MS | Q |     |     |     |     | <1               |
| PCB 118                           | μg/kg MS | Q |     |     |     |     | <1               |
| PCB 138                           | μg/kg MS | Q |     |     |     |     | <1               |
| PCB 153                           | μg/kg MS | Q |     |     |     |     | <1               |
| PCB 180                           | μg/kg MS | Q |     |     |     |     | <1               |
| PCB totaux (7)                    | μg/kg MS | Q |     |     |     |     | <7.0             |
| HYDROCARBURES TOTAUX              | <b>(</b> |   |     |     |     |     |                  |
| Hydrocarbures Volatils C5-<br>C10 | mg/kg MS | Q | <10 | <10 | <10 | <10 |                  |
| fraction C10-C12                  | mg/kg MS |   | <5  | <5  | <5  | <5  |                  |
| fraction C10-C12                  | mg/kg MS |   |     |     |     |     | 49 <sup>3)</sup> |
| fraction C12-C16                  | mg/kg MS |   | <10 | <10 | 14  | <10 |                  |

Les analyses notées Q sont accréditées par le RvA.



0.12

0.03

0.11

0.09

1.4



benzo(a)pyrène

dibenzo(ah)anthracène

dibenzo(ah)anthracène

indéno(1,2,3-cd)pyrène

indéno(1,2,3-cd)pyrène

Somme des HAP (10) VROM

Somme des HAP (16) - EPA

benzo(ghi)pérylène

benzo(ghi)pérylène



RAMBOLL FRANCE
Vincent DAMART

Page 4 sur 25

Rapport d'analyse

Projet FRTOTMS020 Sol\_nov2019 GAL3-5 Date de commande 27-11-2019

 Référence du projet
 FRTOTMS020
 Date de début
 28-11-2019

 Réf. du rapport
 13154549
 - 1
 Rapport du
 07-12-2019

| Code                    | Matrice            | Ré       | f. échan | tillon          |       |                         |       |                   |
|-------------------------|--------------------|----------|----------|-----------------|-------|-------------------------|-------|-------------------|
| 001                     | Sol                | GA       | L3-5_S0  | 0(0-1.5)_201119 |       |                         |       |                   |
| 002                     | Sol                |          |          | (0-0.3)_211119  |       |                         |       |                   |
| 003                     | Sol                |          |          | (0.3-1)_211119  |       |                         |       |                   |
| 004                     | Sol                |          |          | 2(0-0.6)_211119 |       |                         |       |                   |
| 005                     | Sol                |          |          | 2(0.6-1)_211119 |       |                         |       |                   |
|                         |                    |          |          | ( /             |       |                         |       |                   |
| Analyse                 |                    | Unité    | Q        | 001             | 002   | 003                     | 004   | 005               |
| fraction C              | 12-C16             | mg/kg MS |          |                 |       |                         |       | 310               |
| fraction C              | 16-C21             | mg/kg MS |          | <15             | <15   | 59                      | <15   |                   |
| fraction C              | 16-C21             | mg/kg MS |          |                 |       |                         |       | 260               |
| fraction Ca             | 21-C40             | mg/kg MS |          |                 |       |                         |       | 660 <sup>2)</sup> |
| hydrocarb<br>C40        | ures totaux C10-   | mg/kg MS | Q        |                 |       |                         |       | 1300              |
| fraction ar             | omat. >C6-C7       | mg/kg MS | Q        | <0.4            | <0.4  | <0.4                    | <0.4  |                   |
| fraction ar             | omat. >C7-C8       | mg/kg MS | Q        | < 0.05          | <0.05 | 0.21                    | <0.05 |                   |
| fraction ar             | omat. >C8-C10      | mg/kg MS | Q        | <0.3            | <0.3  | <0.3                    | <0.3  |                   |
|                         | iphat. >C5-C6      | mg/kg MS | Q        | <0.5            | <0.5  | <0.5                    | <0.5  |                   |
| fraction ali            | iphat. >C6-C8      | mg/kg MS | Q        | <0.6            | <0.6  | <0.6                    | <0.6  |                   |
| fraction ali            | iphat. >C8-C10     | mg/kg MS | Q        | 0.89            | 0.88  | <0.6                    | <0.6  |                   |
| fraction C2             | 21-C35             | mg/kg MS |          | <10             | 38    | 280                     | <10   |                   |
| fraction C3             |                    | mg/kg MS |          | <15             | <15   | <b>35</b> <sup>2)</sup> | <15   |                   |
| hydrocarb<br>C40        | ures totaux C10-   | mg/kg MS | Q        | <20             | 64    | 390                     | <20   |                   |
| LIXIVIATI               |                    |          |          |                 |       |                         |       |                   |
| Lixiviation<br>EN-12457 |                    |          | Q        |                 |       |                         |       | #                 |
| date de la              | ncement            |          |          |                 |       |                         |       | 03-12-2019        |
| L/S                     |                    | ml/g     | Q        |                 |       |                         |       | 10.01             |
| pH final ap             |                    | -        | Q        |                 |       |                         |       | 9.34              |
| -                       | ire pour mes. pH   | °C       |          |                 |       |                         |       | 17.5              |
| conductivi              | té (25°C) ap. lix. | μS/cm    | Q        |                 |       |                         |       | 250               |
| ELUAT C                 |                    |          |          |                 |       |                         |       |                   |
| COD, CO                 | T sur éluat        | mg/kg MS | Q        |                 |       |                         |       | 40                |
| ELUAT M                 | ETAUX              |          |          |                 |       |                         |       |                   |
| antimoine               |                    | mg/kg MS | Q        |                 |       |                         |       | <0.039 4)         |
| arsenic                 |                    | mg/kg MS | Q        |                 |       |                         |       | 0.11              |
| baryum                  |                    | mg/kg MS | Q        |                 |       |                         |       | 0.33 4)           |
| cadmium                 |                    | mg/kg MS | Q        |                 |       |                         |       | <0.004 4)         |
| chrome                  |                    | mg/kg MS | Q        |                 |       |                         |       | <0.01 4)          |
| cuivre                  |                    | mg/kg MS | Q        |                 |       |                         |       | <0.05 4)          |
| mercure                 |                    | mg/kg MS | Q        |                 |       |                         |       | <0.0005           |
| plomb                   |                    | mg/kg MS | Q        |                 |       |                         |       | <0.1 4)           |
| molybdèn                | e                  | mg/kg MS | Q        |                 |       |                         |       | 0.11              |
| nickel                  |                    | mg/kg MS | Q        |                 |       |                         |       | <0.1 4)           |
| sélénium                |                    | mg/kg MS | Q        |                 |       |                         |       | <0.039 4)         |
| zinc                    |                    | mg/kg MS | Q        |                 |       |                         |       | <0.2 4)           |

ELUAT COMPOSES INORGANIQUES







RAMBOLL FRANCE
Vincent DAMART

Page 5 sur 25

Rapport d'analyse

Projet FRTOTMS020 Sol\_nov2019 GAL3-5 Date de commande 27-11-2019 Référence du projet FRTOTMS020 Date de début 28-11-2019

 Réf. du rapport
 13154549
 - 1
 Rapport du
 07-12-2019

| Code        | Matrice                     | Réf          | f. échantill | on           |     |     |     |      |
|-------------|-----------------------------|--------------|--------------|--------------|-----|-----|-----|------|
| 001         | Sol                         | GA           | L3-5_S0(0-   | -1.5)_201119 |     |     |     |      |
| 002         | Sol                         | GA           | L3-5_S1(0-   | -0.3)_211119 |     |     |     |      |
| 003         | Sol                         | GA           | L3-5_S1(0.   | .3-1)_211119 |     |     |     |      |
| 004         | Sol                         | GA           | L3-5_S2(0-   | -0.6)_211119 |     |     |     |      |
| 005         | Sol GAL3-5_S2(0.6-1)_211119 |              |              |              |     |     |     |      |
| Analyse     |                             | Unité        | Q            | 001          | 002 | 003 | 004 | 005  |
| fraction so | oluble                      | mg/kg MS     | Q            |              |     |     |     | 1460 |
| ELUAT PI    | HENOLS                      |              |              |              |     |     |     |      |
| Indice phé  | énol                        | mg/kg MS     | Q            |              |     |     |     | <0.1 |
| ELUAT DI    | IVERSES ANALY               | SES CHIMIQUE | S            |              |     |     |     |      |
| fluorures   |                             | mg/kg MS     | Q            |              |     |     |     | 16   |
| chlorures   |                             | mg/kg MS     | Q            |              |     |     |     | 38   |
| sulfate     |                             | mg/kg MS     | Q            |              |     |     |     | 759  |







RAMBOLL FRANCE
Vincent DAMART

Page 6 sur 25

Rapport d'analyse

Projet FRTOTMS020 Sol\_nov2019 GAL3-5

Référence du projet FRTOTMS020 Réf. du rapport 13154549 - 1 Date de commande 27-11-2019
Date de début 28-11-2019
Rapport du 07-12-2019

#### Commentaire

| 1 | Limite de quantification élevée en raison d'une dilution nécessaire.               |
|---|------------------------------------------------------------------------------------|
| 2 | Présence de composants supérieurs à C40, cela n influence pas le résultat rapporté |
| 3 | Présence de composants inférieurs à C10, cela ninfluence pas le résultat rapporté  |
| 4 | Analysés par ICP-MS, conforme NEN-EN-ISO 17294-2, au lieu d ICP-AES                |







Matrice

Code

RAMBOLL FRANCE Rapport d'analyse Vincent DAMART

Réf. échantillon

FRTOTMS020 Sol\_nov2019 GAL3-5 Projet Date de commande 27-11-2019

Référence du projet FRTOTMS020 Date de début 28-11-2019 Réf. du rapport 13154549 - 1 Rapport du 07-12-2019

Page 7 sur 25

| 006 Sol                        |                          | S2bis(0-1.1)_211119   |         |                   |              |              |
|--------------------------------|--------------------------|-----------------------|---------|-------------------|--------------|--------------|
| 007 Sol                        |                          | S2bis(1.1-1.3)_211119 |         |                   |              |              |
| 008 Sol                        | _                        | S3(0-1)_211119        |         |                   |              |              |
| 009 Sol                        |                          | S4(0-3)_211119        |         |                   |              |              |
| 010 Sol                        | GAL3-5_                  | S5(0-0.4)_201119      |         |                   |              |              |
| Analyse                        | Unité Q                  | 006                   | 007     | 008               | 009          | 010          |
| matière sèche                  | % massique Q             | 77.5                  | 63.1    | 80.7              | 93.9         | 80.8         |
| СОТ                            | mg/kg MS Q               |                       | 22000   |                   |              |              |
| pH (KCI)                       | - Q                      |                       | 7.8     |                   |              |              |
| température pour mes. pH       | °C                       |                       | 20.8    |                   |              |              |
| METAUX                         |                          |                       |         |                   |              |              |
| arsenic                        | mg/kg MS Q               | 21                    | 20      | 14                | 18           | 6.5          |
| cadmium                        | mg/kg MS Q               | 0.29                  | 0.37    | <0.2              | <0.2         | <0.2         |
| chrome                         | mg/kg MS Q               | 33                    | 41      | 63                | 42           | 44           |
| cuivre                         | mg/kg MS Q               | 61                    | 62      | 140               | 18           | 19           |
| mercure                        | mg/kg MS Q               | 0.13                  | 0.14    | <0.05             | < 0.05       | < 0.05       |
| plomb                          | mg/kg MS Q               | 84                    | 87      | 54                | 22           | 41           |
| nickel                         | mg/kg MS Q               | 29                    | 30      | 44                | 28           | 47           |
| zinc                           | mg/kg MS Q               | 170                   | 140     | 70                | 34           | 58           |
| COMPOSES AROMATIQU             |                          |                       |         |                   |              |              |
| benzène                        | mg/kg MS Q               | 0.04                  |         | 0.10              | <0.02        | < 0.02       |
| benzène                        | mg/kg MS Q               |                       | < 0.05  |                   |              |              |
| toluène                        | mg/kg MS Q               | 0.07                  |         | 0.16              | <0.02        | < 0.02       |
| toluène                        | mg/kg MS Q               |                       | < 0.05  |                   |              |              |
| éthylbenzène                   | mg/kg MS Q               | <0.02                 |         | 0.02              | <0.02        | <0.02        |
| éthylbenzène                   | mg/kg MS Q               |                       | 0.07    |                   |              |              |
| orthoxylène                    | mg/kg MS Q               | <0.02                 |         | 0.03              | <0.02        | <0.02        |
| orthoxylène                    | mg/kg MS Q               |                       | <0.05   |                   |              |              |
| para- et métaxylène            | mg/kg MS Q               | 0.07                  |         | 0.14              | <0.02        | <0.02        |
| para- et métaxylène            | mg/kg MS Q               |                       | 0.09    |                   |              |              |
| xylènes                        | mg/kg MS Q               | 0.07                  | 0.40    | 0.17              | <0.04        | <0.04        |
| xylènes                        | mg/kg MS Q               | 0.40                  | <0.10   | 0.45              |              |              |
| BTEX totaux<br>BTEX totaux     | mg/kg MS<br>mg/kg MS Q   | 0.18                  | <0.25   | 0.45              | <0.10        | <0.10        |
|                                |                          |                       |         |                   |              |              |
| HYDROCARBURES AROI naphtalène  |                          | .IQUES<br>0.37        |         | 0.05              | <0.01        | 0.02         |
| naphtalène                     | mg/kg MS Q<br>mg/kg MS Q | 0.37                  | 0.86    | 0.05              | <0.01        | 0.02         |
| acénaphtylène                  | mg/kg MS Q               | 0.10                  | 0.00    | <0.04 1)          | <0.01        | <0.01        |
| acenaphtylene<br>acénaphtylène | mg/kg MS Q               | 0.10                  | 0.14 5) | <0.04             | <0.01        | <0.01        |
| acénaphtène                    | mg/kg MS Q               | 0.10                  | 0.14    | <0.04 1)          | <0.01        | <0.01        |
| acénaphtène                    | mg/kg MS Q               | 0.10                  | 0.44    | \U.U <del>4</del> | <b>\0.01</b> | <b>\0.01</b> |
| fluorène                       | mg/kg MS Q               | 0.14                  | 0.44    | <0.04 1)          | <0.01        | <0.01        |
| fluorène                       | mg/kg MS Q               | 0.14                  | 0.57 5) | \U.U <del>4</del> | <b>\0.01</b> | <b>\0.01</b> |
| Hadiene                        | mg/kg Wo Q               |                       | 0.37    |                   |              |              |







RAMBOLL FRANCE

Vincent DAMART

# Rapport d'analyse

Page 8 sur 25

Rapport du

FRTOTMS020 Sol\_nov2019 GAL3-5 Projet

Référence du projet FRTOTMS020 Réf. du rapport 13154549 - 1 Date de commande 27-11-2019 Date de début 28-11-2019 07-12-2019

| Code | Matrice | Réf. échantillon             |
|------|---------|------------------------------|
| 006  | Sol     | GAL3-5_S2bis(0-1.1)_211119   |
| 007  | Sol     | GAL3-5_S2bis(1.1-1.3)_211119 |
| 800  | Sol     | GAL3-5_S3(0-1)_211119        |
| 009  | Sol     | GAL3-5_S4(0-3)_211119        |
| 010  | Sol     | GAL3-5_S5(0-0.4)_201119      |

| Analyse                           | Unité    | Q | 006  | 007               | 008      | 009   | 010     |
|-----------------------------------|----------|---|------|-------------------|----------|-------|---------|
| phénanthrène                      | mg/kg MS | Q | 1.7  |                   | 0.12     | <0.01 | 0.02    |
| phénanthrène                      | mg/kg MS | Q |      | 1.8               | 4)       |       |         |
| anthracène                        | mg/kg MS | Q | 0.33 |                   | <0.04 1) | <0.01 | <0.01   |
| anthracène                        | mg/kg MS | Q |      | 0.23              |          |       |         |
| fluoranthène                      | mg/kg MS | Q | 2.4  |                   | 0.20     | <0.01 | 0.02    |
| fluoranthène                      | mg/kg MS | Q |      | 0.16              |          |       |         |
| pyrène                            | mg/kg MS | Q | 2.0  |                   | 0.17     | <0.01 | 0.02    |
| pyrène                            | mg/kg MS | Q |      | 0.36              |          |       | 5)      |
| benzo(a)anthracène                | mg/kg MS | Q | 1.2  |                   | 0.13     | <0.01 | 0.01 5) |
| benzo(a)anthracène                | mg/kg MS | Q | 4.0  | 0.11              |          |       | 0.04    |
| chrysène                          | mg/kg MS | Q | 1.2  | 0.40              | 0.14     | <0.01 | 0.01    |
| chrysène                          | mg/kg MS | Q |      | 0.18              |          |       |         |
| benzo(b)fluoranthène              | mg/kg MS | Q | 1.1  |                   | 0.15     | <0.01 | 0.01    |
| benzo(b)fluoranthène              | mg/kg MS | Q |      | 0.14              |          |       |         |
| benzo(k)fluoranthène              | mg/kg MS | Q | 0.56 |                   | 0.08     | <0.01 | <0.01   |
| benzo(k)fluoranthène              | mg/kg MS | Q | 4.0  | 0.06              |          |       | 0.04    |
| benzo(a)pyrène                    | mg/kg MS | Q | 1.2  |                   | 0.14     | <0.01 | 0.01    |
| benzo(a)pyrène                    | mg/kg MS | Q |      | 0.11              | 2 2 4 1) |       | 0.04    |
| dibenzo(ah)anthracène             | mg/kg MS | Q | 0.36 |                   | <0.04 1) | <0.01 | <0.01   |
| dibenzo(ah)anthracène             | mg/kg MS | Q | 4.4  | <0.02             | 0.40     | 0.04  | 0.00    |
| benzo(ghi)pérylène                | mg/kg MS | Q | 1.1  | 0.10 5)           | 0.18     | <0.01 | 0.02    |
| benzo(ghi)pérylène                | mg/kg MS | Q | 0.07 | 0.10              | 0.40     | 0.04  | 0.04    |
| indéno(1,2,3-cd)pyrène            | mg/kg MS | Q | 0.97 | 0.04              | 0.12     | <0.01 | 0.01    |
| indéno(1,2,3-cd)pyrène            | mg/kg MS | Q |      | 0.04              |          |       |         |
| Somme des HAP (10) VROM           | mg/kg MS | Q | 45   | 3.7               | 4.5      | 0.40  | 0.40    |
| Somme des HAP (16) - EPA          | mg/kg MS | Q | 15   | F 2               | 1.5      | <0.16 | <0.16   |
| Somme des HAP (16) - EPA          | mg/kg MS | Q |      | 5.3               |          |       |         |
| POLYCHLOROBIPHENYLS (F            | PCB)     |   |      | 4)                |          |       |         |
| PCB 28                            | μg/kg MS | Q |      | <1.7              |          |       |         |
| PCB 52                            | μg/kg MS | Q |      | <1.9 1)           |          |       |         |
| PCB 101                           | μg/kg MS | Q |      | <1.6              |          |       |         |
| PCB 118                           | μg/kg MS | Q |      | <1.8 1)           |          |       |         |
| PCB 138                           | μg/kg MS | Q |      | <1.7 1)           |          |       |         |
| PCB 153                           | μg/kg MS | Q |      | <1.2 1)           |          |       |         |
| PCB 180                           | μg/kg MS | Q |      | <1.7 1)           |          |       |         |
| PCB totaux (7)                    | μg/kg MS | Q |      | <12               |          |       |         |
| HYDROCARBURES TOTAUX              |          |   |      |                   |          |       |         |
| Hydrocarbures Volatils C5-<br>C10 | mg/kg MS | Q | <10  |                   | <10      | <10   | <10     |
| fraction C10-C12                  | mg/kg MS |   | <5   |                   | <5       | <5    | <5      |
| fraction C10-C12                  | mg/kg MS |   |      | 500 <sup>3)</sup> |          |       |         |
| fraction C12-C16                  | mg/kg MS |   | <10  |                   | <10      | <10   | <10     |







RAMBOLL FRANCE Vincent DAMART

Page 9 sur 25 Rapport d'analyse

FRTOTMS020 Sol\_nov2019 GAL3-5 Projet

Référence du projet FRTOTMS020 Réf. du rapport 13154549 - 1 Date de commande 27-11-2019 Date de début 28-11-2019 Rapport du 07-12-2019

| Code | Matrice | Réf. échantillon             |  |
|------|---------|------------------------------|--|
| 006  | Sol     | GAL3-5_S2bis(0-1.1)_211119   |  |
| 007  | Sol     | GAL3-5_S2bis(1.1-1.3)_211119 |  |
| 800  | Sol     | GAL3-5_S3(0-1)_211119        |  |
| 009  | Sol     | GAL3-5_S4(0-3)_211119        |  |
| 010  | Sol     | GAL3-5_S5(0-0.4)_201119      |  |

| Analyse                          | Unité    | Q | 006  | 007                | 008    | 009    | 010    |
|----------------------------------|----------|---|------|--------------------|--------|--------|--------|
| fraction C12-C16                 | mg/kg MS |   |      | 2300               |        |        |        |
| fraction C16-C21                 | mg/kg MS |   | <15  |                    | <15    | <15    | <15    |
| raction C16-C21                  | mg/kg MS |   |      | 1600               |        |        |        |
| raction C21-C40                  | mg/kg MS |   |      | 3800 <sup>2)</sup> |        |        |        |
| nydrocarbures totaux C10-<br>C40 | mg/kg MS | Q |      | 8200               |        |        |        |
| raction aromat. >C6-C7           | mg/kg MS | Q | <0.4 |                    | <0.4   | <0.4   | <0.4   |
| raction aromat. >C7-C8           | mg/kg MS | Q | 0.09 |                    | < 0.05 | < 0.05 | < 0.05 |
| raction aromat. >C8-C10          | mg/kg MS | Q | <0.3 |                    | <0.3   | <0.3   | <0.3   |
| raction aliphat. >C5-C6          | mg/kg MS | Q | <0.5 |                    | <0.5   | <0.5   | <0.5   |
| raction aliphat. >C6-C8          | mg/kg MS | Q | <0.6 |                    | <0.6   | <0.6   | <0.6   |
| raction aliphat. >C8-C10         | mg/kg MS | Q | 0.67 |                    | <0.6   | 0.63   | <0.6   |
| raction C21-C35                  | mg/kg MS |   | 67   |                    | 90     | <10    | 57     |
| raction C35-C40                  | mg/kg MS |   | <15  |                    | 18 2)  | <15    | <15    |
| nydrocarbures totaux C10-<br>C40 | mg/kg MS | Q | 95   |                    | 120    | <20    | 81     |

| C40                                 |          |   |            |
|-------------------------------------|----------|---|------------|
| LIXIVIATION                         |          |   |            |
| Lixiviation 24h - NF-<br>EN-12457-2 |          | Q | #          |
| date de lancement                   |          |   | 03-12-2019 |
| L/S                                 | ml/g     | Q | 10.02      |
| pH final ap. lix.                   | -        | Q | 8.35       |
| température pour mes. pH            | °C       |   | 18.2       |
| conductivité (25°C) ap. lix.        | μS/cm    | Q | 234        |
|                                     |          |   |            |
| ELUAT COT                           |          |   |            |
| COD, COT sur éluat                  | mg/kg MS | Q | 56         |
|                                     |          |   |            |
| ELUAT METAUX                        |          |   |            |
| antimoine                           | mg/kg MS | Q | 0.15 4)    |
| arsenic                             | mg/kg MS | Q | <0.05 4)   |
| baryum                              | mg/kg MS | Q | 2.2 4)     |
| cadmium                             | mg/kg MS | Q | <0.004 4)  |
| chrome                              | mg/kg MS | Q | <0.01 4)   |
| cuivre                              | mg/kg MS | Q | <0.05 4)   |
| mercure                             | mg/kg MS | Q | <0.0005    |
| plomb                               | mg/kg MS | Q | <0.1 4)    |
| molybdène                           | mg/kg MS | Q | 0.33 4)    |
| nickel                              | mg/kg MS | Q | <0.1 4)    |
|                                     |          |   |            |

mg/kg MS Q

mg/kg MS Q

ELUAT COMPOSES INORGANIQUES

Les analyses notées Q sont accréditées par le RvA.





zinc

sélénium

<0.039 4)

<0.2 4)



RAMBOLL FRANCE

Vincent DAMART

Page 10 sur 25

Rapport d'analyse

Projet FRTOTMS020 Sol\_nov2019 GAL3-5

Référence du projet FRTOTMS020 Réf. du rapport 13154549 - 1

ELUAT PHENOLS Indice phénol

sulfate

Date de commande 27-11-2019

Date de début 28-11-2019

Rapport du 07-12-2019

| Code        | Matrice | R        | éf. échantill | on               |      |     |     |     |
|-------------|---------|----------|---------------|------------------|------|-----|-----|-----|
| 006         | Sol     | G        | AL3-5_S2bis   | s(0-1.1)_211119  |      |     |     |     |
| 007         | Sol     | G.       | AL3-5_S2bis   | (1.1-1.3)_211119 |      |     |     |     |
| 800         | Sol     | G.       | AL3-5_S3(0-   | -1)_211119       |      |     |     |     |
| 009         | Sol     |          | AL3-5_S4(0-   |                  |      |     |     |     |
| 010         | Sol     | G        | AL3-5_S5(0-   | 0.4)_201119      |      |     |     |     |
| Analyse     |         | Unité    | Q             | 006              | 007  | 008 | 009 | 010 |
| fraction so | oluble  | mg/kg MS |               |                  | 1580 |     |     |     |

<0.1

438

| ELUAT DIVERSES AN | ALYSES CHIMIQUE | S |     |
|-------------------|-----------------|---|-----|
| fluorures         | mg/kg MS        | Q | 8.4 |
| chlorures         | mg/kg MS        | Q | 25  |

mg/kg MS Q

mg/kg MS Q





RAMBOLL FRANCE

Vincent DAMART

Page 11 sur 25

Rapport d'analyse

Projet FRTOTMS020 Sol\_nov2019 GAL3-5

Référence du projet FRTOTMS020 Réf. du rapport 13154549 - 1 Date de commande 27-11-2019
Date de début 28-11-2019
Rapport du 07-12-2019

| Commentaire |                                                                                       |
|-------------|---------------------------------------------------------------------------------------|
| 1           | Limite de quantification élevée en raison d'une dilution nécessaire.                  |
| 2           | Présence de composants supérieurs à C40, cela n influence pas le résultat rapporté    |
| 3           | Présence de composants inférieurs à C10, cela ninfluence pas le résultat rapporté     |
| 4           | Analysés par ICP-MS, conforme NEN-EN-ISO 17294-2, au lieu d ICP-AES                   |
| 5           | Résultat fourni à titre indicatif en raison de la présence de composants interférants |







RAMBOLL FRANCE Page 12 sur 25 Rapport d'analyse Vincent DAMART

FRTOTMS020 Sol\_nov2019 GAL3-5 Projet

Référence du projet FRTOTMS020 Réf. du rapport 13154549 - 1

Rapport du

Date de commande 27-11-2019 Date de début 28-11-2019 07-12-2019

| Code | Matrice | Réf. échantillon          |  |
|------|---------|---------------------------|--|
| 011  | Sol     | GAL3-5_S5(0.4-0.9)_201119 |  |
| 012  | Sol     | GAL3-5_S6(0-1.5)_201119   |  |
| 013  | Sol     | GAL3-5_S8(0-0.7)_211119   |  |
| 014  | Sol     | GAL3-5_S8(0.7-1.5)_211119 |  |

| Analyse                           | Unité     | Q        | 011     | 012    | 013     | 014   |  |
|-----------------------------------|-----------|----------|---------|--------|---------|-------|--|
| matière sèche                     | % massiqu | e Q      | 78.6    | 82.0   | 78.6    | 73.4  |  |
| METAUX                            |           |          |         |        |         |       |  |
| arsenic                           | mg/kg MS  | Q        | 11      | 11     | 11      | 25    |  |
| cadmium                           | mg/kg MS  | Q        | <0.2    | <0.2   | <0.2    | 0.38  |  |
| chrome                            | mg/kg MS  | Q        | 34      | 32     | 35      | 46    |  |
| cuivre                            | mg/kg MS  | Q        | 13      | 11     | 23      | 39    |  |
| mercure                           | mg/kg MS  | Q        | <0.05   | < 0.05 | < 0.05  | <0.05 |  |
| olomb                             | mg/kg MS  | Q        | 22      | 15     | 21      | 37    |  |
| nickel                            | mg/kg MS  | Q        | 25      | 24     | 27      | 50    |  |
| zinc                              | mg/kg MS  | Q        | 38      | 27     | 41      | 130   |  |
| COMPOSES AROMATIQUES              | VOLATILS  |          |         |        |         |       |  |
| benzène                           | mg/kg MS  | Q        | <0.02   | <0.02  | <0.02   | <0.02 |  |
| toluène                           | mg/kg MS  | Q        | <0.02   | <0.02  | <0.02   | <0.02 |  |
| éthylbenzène                      | mg/kg MS  | Q        | <0.02   | <0.02  | <0.02   | <0.02 |  |
| orthoxylène                       | mg/kg MS  | Q        | <0.02   | <0.02  | <0.02   | <0.02 |  |
| para- et métaxylène               | mg/kg MS  | Q        | <0.02   | <0.02  | <0.02   | <0.02 |  |
| xylènes                           | mg/kg MS  | Q        | <0.04   | <0.04  | <0.04   | <0.04 |  |
| BTEX totaux                       | mg/kg MS  |          | <0.10   | <0.10  | <0.10   | <0.10 |  |
| HYDROCARBURES AROMAT              | TQUES POL | YCYCLIQL | IES     |        |         |       |  |
| naphtalène                        | mg/kg MS  | Q        | 0.02    | <0.01  | <0.01   | <0.01 |  |
| acénaphtylène                     | mg/kg MS  | Q        | <0.01   | <0.01  | <0.01   | <0.01 |  |
| acénaphtène                       | mg/kg MS  | Q        | <0.01   | <0.01  | <0.01   | <0.01 |  |
| fluorène                          | mg/kg MS  | Q        | <0.01   | <0.01  | <0.01   | <0.01 |  |
| phénanthrène                      | mg/kg MS  | Q        | <0.01   | <0.01  | <0.01   | <0.01 |  |
| anthracène                        | mg/kg MS  | Q        | <0.01   | <0.01  | <0.01   | <0.01 |  |
| fluoranthène                      | mg/kg MS  | Q        | <0.01   | <0.01  | 0.02    | <0.01 |  |
| pyrène                            | mg/kg MS  | Q        | <0.01   | <0.01  | 0.01 5) | <0.01 |  |
| benzo(a)anthracène                | mg/kg MS  | Q        | 0.02 5) | <0.01  | <0.01   | <0.01 |  |
| chrysène                          | mg/kg MS  | Q        | 0.03    | <0.01  | <0.01   | <0.01 |  |
| benzo(b)fluoranthène              | mg/kg MS  | Q        | <0.01   | <0.01  | <0.01   | <0.01 |  |
| benzo(k)fluoranthène              | mg/kg MS  | Q        | <0.01   | <0.01  | <0.01   | <0.01 |  |
| benzo(a)pyrène                    | mg/kg MS  | Q        | <0.01   | <0.01  | <0.01   | <0.01 |  |
| dibenzo(ah)anthracène             | mg/kg MS  | Q        | <0.01   | <0.01  | <0.01   | <0.01 |  |
| benzo(ghi)pérylène                | mg/kg MS  | Q        | <0.01   | <0.01  | <0.01   | <0.01 |  |
| ndéno(1,2,3-cd)pyrène             | mg/kg MS  | Q        | <0.01   | <0.01  | <0.01   | <0.01 |  |
| Somme des HAP (16) - EPA          | mg/kg MS  | Q        | <0.16   | <0.16  | <0.16   | <0.16 |  |
| HYDROCARBURES TOTAUX              |           |          |         |        |         |       |  |
| Hydrocarbures Volatils C5-<br>C10 | mg/kg MS  | Q        | <10     | <10    | <10     | <10   |  |







RAMBOLL FRANCE
Vincent DAMART

Page 13 sur 25

Rapport d'analyse

Projet FRTOTMS020 Sol\_nov2019 GAL3-5

Référence du projet FRTOTMS020 Réf. du rapport 13154549 - 1 Date de commande 27-11-2019

Date de début 28-11-2019

Rapport du 07-12-2019

| Code | Matrice | Réf. échantillon          |  |
|------|---------|---------------------------|--|
| 011  | Sol     | GAL3-5_S5(0.4-0.9)_201119 |  |
| 012  | Sol     | GAL3-5_S6(0-1.5)_201119   |  |
| 013  | Sol     | GAL3-5_S8(0-0.7)_211119   |  |
| 014  | Sol     | GAL3-5_S8(0.7-1.5)_211119 |  |

| Analyse                 | Unité    | Q | 011    | 012    | 013    | 014    |
|-------------------------|----------|---|--------|--------|--------|--------|
| fraction C10-C12        | mg/kg MS |   | <5     | <5     | <5     | <5     |
| raction C12-C16         | mg/kg MS |   | <10    | <10    | <10    | <10    |
| action C16-C21          | mg/kg MS |   | <15    | <15    | <15    | <15    |
| action aromat. >C6-C7   | mg/kg MS | Q | <0.4   | <0.4   | <0.4   | < 0.4  |
| action aromat. >C7-C8   | mg/kg MS | Q | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
| action aromat. >C8-C10  | mg/kg MS | Q | <0.3   | <0.3   | <0.3   | < 0.3  |
| action aliphat. >C5-C6  | mg/kg MS | Q | <0.5   | <0.5   | <0.5   | <0.5   |
| ction aliphat. >C6-C8   | mg/kg MS | Q | <0.6   | <0.6   | <0.6   | <0.6   |
| action aliphat. >C8-C10 | mg/kg MS | Q | <0.6   | <0.6   | 0.64   | <0.6   |
| ction C21-C35           | mg/kg MS |   | <10    | <10    | <10    | <10    |
| action C35-C40          | mg/kg MS |   | <15    | <15    | <15    | <15    |
| drocarbures totaux C10- | mg/kg MS | Q | <20    | <20    | <20    | <20    |







RAMBOLL FRANCE
Vincent DAMART

Page 14 sur 25

Rapport d'analyse

Projet FRTOTMS020 Sol\_nov2019 GAL3-5 Date de commande 27-11-2019

 Référence du projet
 FRTOTMS020
 Date de début
 28-11-2019

 Réf. du rapport
 13154549 - 1
 Rapport du
 07-12-2019

Commentaire

5 Résultat fourni à titre indicatif en raison de la présence de composants interférants







RAMBOLL FRANCE Page 15 sur 25 Rapport d'analyse Vincent DAMART

FRTOTMS020 Sol\_nov2019 GAL3-5 Projet

Référence du projet FRTOTMS020 Réf. du rapport 13154549 - 1

Date de commande 27-11-2019 Date de début 28-11-2019 07-12-2019 Rapport du

| Analyse                       | Matrice | Référence normative                                                                                                                                                                                                                                                                            |
|-------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| matière sèche                 | Sol     | Sol: Equivalent à ISO 11465 et equivalent à NEN-EN 15934 (prétraitement de l?échantillon conforme à NF-EN 16179). Sol (AS3000): Conforme à AS3010-2 et équivalente à NEN-EN 15934                                                                                                              |
| arsenic                       | Sol     | Conforme à NEN 6950 (digestion conforme à NEN 6961, mesure conforme à NEN-EN-ISO 17294-2); Méthode interne (digestion conforme à NEN 6961 et équivalent à NF-EN 16174, mesure conforme à NEN-EN-ISO 17294-2 et conforme à NF EN 16171) (prétraitement de l?échantillon conforme à NF-EN 16179) |
| cadmium                       | Sol     | Idem                                                                                                                                                                                                                                                                                           |
| chrome                        | Sol     | Idem                                                                                                                                                                                                                                                                                           |
| cuivre                        | Sol     | Idem                                                                                                                                                                                                                                                                                           |
| mercure                       | Sol     | Idem                                                                                                                                                                                                                                                                                           |
| plomb                         | Sol     | ldem                                                                                                                                                                                                                                                                                           |
| nickel                        | Sol     | ldem                                                                                                                                                                                                                                                                                           |
| zinc                          | Sol     | ldem                                                                                                                                                                                                                                                                                           |
| benzène                       | Sol     | Conforme à NF EN ISO 22155 (prétraitement de léchantillon conforme à NF-EN 16179)                                                                                                                                                                                                              |
| toluène                       | Sol     | ldem                                                                                                                                                                                                                                                                                           |
| éthylbenzène                  | Sol     | ldem                                                                                                                                                                                                                                                                                           |
| orthoxylène                   | Sol     | Idem                                                                                                                                                                                                                                                                                           |
| para- et métaxylène           | Sol     | Idem                                                                                                                                                                                                                                                                                           |
| xylènes                       | Sol     | ldem                                                                                                                                                                                                                                                                                           |
| BTEX totaux                   | Sol     | Idem                                                                                                                                                                                                                                                                                           |
| naphtalène                    | Sol     | Conforme à XP CEN/TS 16181 et conforme à NF ISO 18287 (extraction par agitation acétone/hexane, GCMS) (prétraitement de l'échantillon conforme à NF-EN 16179)                                                                                                                                  |
| acénaphtylène                 | Sol     | ldem                                                                                                                                                                                                                                                                                           |
| acénaphtène                   | Sol     | ldem                                                                                                                                                                                                                                                                                           |
| fluorène                      | Sol     | ldem                                                                                                                                                                                                                                                                                           |
| phénanthrène                  | Sol     | Idem                                                                                                                                                                                                                                                                                           |
| anthracène                    | Sol     | Idem                                                                                                                                                                                                                                                                                           |
| fluoranthène                  | Sol     | Idem                                                                                                                                                                                                                                                                                           |
| pyrène                        | Sol     | Idem                                                                                                                                                                                                                                                                                           |
| benzo(a)anthracène            | Sol     | Idem                                                                                                                                                                                                                                                                                           |
| chrysène                      | Sol     | Idem                                                                                                                                                                                                                                                                                           |
| benzo(b)fluoranthène          | Sol     | Idem                                                                                                                                                                                                                                                                                           |
| benzo(k)fluoranthène          | Sol     | Idem                                                                                                                                                                                                                                                                                           |
| benzo(a)pyrène                | Sol     | Idem                                                                                                                                                                                                                                                                                           |
| dibenzo(ah)anthracène         | Sol     | Idem                                                                                                                                                                                                                                                                                           |
| benzo(ghi)pérylène            | Sol     | Idem                                                                                                                                                                                                                                                                                           |
| indéno(1,2,3-cd)pyrène        | Sol     | Idem                                                                                                                                                                                                                                                                                           |
| Somme des HAP (16) - EPA      | Sol     | Conforme à NF-ISO 18287 et XP CEN/TS 16181 (extraction par agitation acétone/hexane, GCMS)                                                                                                                                                                                                     |
| Hydrocarbures Volatils C5-C10 | Sol     | Méthode conforme à NF EN ISO 16558-1 (prétraitement de l'échantillon conforme à NF EN 16179)                                                                                                                                                                                                   |
| fraction C10-C12              | Sol     | Conforme à NF EN ISO 16703 (Extraction par agitation acétone/<br>hexane, purification avec Florisil) (prétraitement de l'échantillon<br>conforme à NF EN 16179)                                                                                                                                |







RAMBOLL FRANCE Page 16 sur 25

Vincent DAMART Rapport d'analyse

Projet FRTOTMS020 Sol\_nov2019 GAL3-5 Date de commande 27-11-2019

Référence du projet FRTOTMS020 Réf. du rapport 13154549 - 1 Date de début 28-11-2019 Rapport du 07-12-2019

| Analyse                      | Matrice | Référence normative                                                                                                                                             |
|------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| raction C12-C16              | Sol     | ldem                                                                                                                                                            |
| raction C16-C21              | Sol     | ldem                                                                                                                                                            |
| raction aromat. >C6-C7       | Sol     | Méthode conforme à NF EN ISO 16558-1 (prétraitement de l'échantillon conforme à NF EN 16179)                                                                    |
| raction aromat. >C7-C8       | Sol     | Idem                                                                                                                                                            |
| raction aromat. >C8-C10      | Sol     | Idem                                                                                                                                                            |
| raction aliphat. >C5-C6      | Sol     | Idem                                                                                                                                                            |
| raction aliphat. >C6-C8      | Sol     | Idem                                                                                                                                                            |
| raction aliphat. >C8-C10     | Sol     | Idem                                                                                                                                                            |
| raction C21-C35              | Sol     | Conforme à NF EN ISO 16703 (Extraction par agitation acétone/<br>hexane, purification avec Florisil) (prétraitement de l'échantillon<br>conforme à NF EN 16179) |
| raction C35-C40              | Sol     | Idem                                                                                                                                                            |
| nydrocarbures totaux C10-C40 | Sol     | Idem                                                                                                                                                            |
| COT                          | Sol     | Conforme à NEN-EN 13137                                                                                                                                         |
| oH (KCI)                     | Sol     | Conforme à NEN-ISO 10390 et conforme à NEN-EN 15933                                                                                                             |
| penzène                      | Sol     | conforme à NF EN ISO 22155                                                                                                                                      |
| oluène                       | Sol     | Idem                                                                                                                                                            |
| thylbenzène                  | Sol     | Idem                                                                                                                                                            |
| orthoxylène                  | Sol     | Idem                                                                                                                                                            |
| ara- et métaxylène           | Sol     | ldem                                                                                                                                                            |
| ylènes                       | Sol     | Méthode interne, headspace GCMS                                                                                                                                 |
| aphtalène                    | Sol     | Méthode interne, extraction acétone-hexane, analyse par GC-MS                                                                                                   |
| ıcénaphtylène                | Sol     | ldem                                                                                                                                                            |
| acénaphtène                  | Sol     | ldem                                                                                                                                                            |
| luorène                      | Sol     | ldem                                                                                                                                                            |
| hénanthrène                  | Sol     | ldem                                                                                                                                                            |
| nthracène                    | Sol     | ldem                                                                                                                                                            |
| uoranthène                   | Sol     | ldem                                                                                                                                                            |
| yrène                        | Sol     | ldem                                                                                                                                                            |
| enzo(a)anthracène            | Sol     | ldem                                                                                                                                                            |
| hrysène                      | Sol     | ldem                                                                                                                                                            |
| enzo(b)fluoranthène          | Sol     | ldem                                                                                                                                                            |
| enzo(k)fluoranthène          | Sol     | ldem                                                                                                                                                            |
| penzo(a)pyrène               | Sol     | ldem                                                                                                                                                            |
| libenzo(ah)anthracène        | Sol     | ldem                                                                                                                                                            |
| enzo(ghi)pérylène            | Sol     | ldem                                                                                                                                                            |
| ndéno(1,2,3-cd)pyrène        | Sol     | Idem                                                                                                                                                            |
| Somme des HAP (10) VROM      | Sol     | Idem                                                                                                                                                            |
| PCB 28                       | Sol     | Méthode interne, extraction acétone/hexane, analyse GCMS                                                                                                        |
| CB 52                        | Sol     | Idem                                                                                                                                                            |
| CB 101                       | Sol     | Idem                                                                                                                                                            |
| PCB 118                      | Sol     | ldem                                                                                                                                                            |
| PCB 138                      | Sol     | ldem                                                                                                                                                            |
| PCB 153                      | Sol     | ldem                                                                                                                                                            |
| PCB 180                      | Sol     | ldem                                                                                                                                                            |
| PCB totaux (7)               | Sol     | ldem                                                                                                                                                            |







RAMBOLL FRANCE
Vincent DAMART

Rapport d'analyse

Projet FRTOTMS020 Sol\_nov2019 GAL3-5

Référence du projet FRTOTMS020 Réf. du rapport 13154549 - 1 Page 17 sur 25

Date de commande 27-11-2019
Date de début 28-11-2019
Rapport du 07-12-2019

| Analyse                         | Matrice   | Référence normative                                                           |
|---------------------------------|-----------|-------------------------------------------------------------------------------|
| fraction C10-C12                | Sol       | Méthode interne (extraction acétone hexane, purification, analyse par GC-FID) |
| fraction C12-C16                | Sol       | Idem                                                                          |
| fraction C16-C21                | Sol       | Idem                                                                          |
| fraction C21-C40                | Sol       | Idem                                                                          |
| hydrocarbures totaux C10-C40    | Sol       | Conforme à NEN-EN-ISO 16703                                                   |
| Lixiviation 24h - NF-EN-12457-2 | Sol Eluat | Conforme à NF-EN 12457-2                                                      |
| pH final ap. lix.               | Sol Eluat | Conforme à NEN-EN-ISO 10523                                                   |
| conductivité (25°C) ap. lix.    | Sol Eluat | Conforme à NEN-ISO 7888 et conforme à EN 27888                                |
| COD, COT sur éluat              | Sol Eluat | Conforme à NEN-EN 1484                                                        |
| antimoine                       | Sol Eluat | Conforme à NEN 6966 et conforme à NEN-EN-ISO 11885                            |
| arsenic                         | Sol Eluat | ldem                                                                          |
| baryum                          | Sol Eluat | ldem                                                                          |
| cadmium                         | Sol Eluat | ldem                                                                          |
| chrome                          | Sol Eluat | ldem                                                                          |
| cuivre                          | Sol Eluat | ldem                                                                          |
| mercure                         | Sol Eluat | Conforme à NEN-EN-ISO 17852                                                   |
| plomb                           | Sol Eluat | Conforme à NEN 6966 et conforme à NEN-EN-ISO 11885                            |
| molybdène                       | Sol Eluat | Idem                                                                          |
| nickel                          | Sol Eluat | Idem                                                                          |
| sélénium                        | Sol Eluat | Idem                                                                          |
| zinc                            | Sol Eluat | Idem                                                                          |
| fraction soluble                | Sol Eluat | Conforme à NEN-EN 15216                                                       |
| Indice phénol                   | Sol Eluat | Conforme à NEN-EN-ISO 14402                                                   |
| fluorures                       | Sol Eluat | Conforme à NEN-EN-ISO 10304-1                                                 |
| chlorures                       | Sol Eluat | Idem                                                                          |
| sulfate                         | Sol Eluat | Idem                                                                          |

| Code | Code barres | Date de réception | Date prelèvement | Flaconnage |
|------|-------------|-------------------|------------------|------------|
|      |             |                   |                  |            |
| 001  | V7870308    | 26-11-2019        | 20-11-2019       | ALC201     |
| 001  | V7870331    | 26-11-2019        | 20-11-2019       | ALC201     |
| 002  | V7871311    | 26-11-2019        | 21-11-2019       | ALC201     |
| 002  | V7871283    | 26-11-2019        | 21-11-2019       | ALC201     |
| 003  | V7871324    | 26-11-2019        | 21-11-2019       | ALC201     |
| 003  | V7871306    | 26-11-2019        | 21-11-2019       | ALC201     |
| 004  | V7870448    | 27-11-2019        | 21-11-2019       | ALC201     |
| 004  | V7870454    | 27-11-2019        | 21-11-2019       | ALC201     |
| 005  | V7870464    | 27-11-2019        | 21-11-2019       | ALC201     |
| 005  | V7870447    | 27-11-2019        | 21-11-2019       | ALC201     |
| 006  | V7870446    | 27-11-2019        | 21-11-2019       | ALC201     |
| 006  | V7870465    | 27-11-2019        | 21-11-2019       | ALC201     |
| 007  | V7870450    | 27-11-2019        | 21-11-2019       | ALC201     |
| 007  | V7870471    | 27-11-2019        | 21-11-2019       | ALC201     |
| 800  | V7870439    | 27-11-2019        | 21-11-2019       | ALC201     |
| 800  | V7870455    | 27-11-2019        | 21-11-2019       | ALC201     |







RAMBOLL FRANCE Vincent DAMART

# Rapport d'analyse

Page 18 sur 25

Projet FRTOTMS020 Sol\_nov2019 GAL3-5

Référence du projet FRTOTMS020 Réf. du rapport 13154549 - 1 Date de commande 27-11-2019
Date de début 28-11-2019
Rapport du 07-12-2019

| Code | Code barres | Date de réception | Date prelèvement | Flaconnage |
|------|-------------|-------------------|------------------|------------|
| 009  | V7870451    | 27-11-2019        | 21-11-2019       | ALC201     |
| 009  | V7870466    | 27-11-2019        | 21-11-2019       | ALC201     |
| 010  | V7870327    | 28-11-2019        | 20-11-2019       | ALC201     |
| 010  | V7870330    | 28-11-2019        | 20-11-2019       | ALC201     |
| 011  | V7870429    | 28-11-2019        | 20-11-2019       | ALC201     |
| 011  | V7870317    | 28-11-2019        | 20-11-2019       | ALC201     |
| 012  | V7870325    | 28-11-2019        | 20-11-2019       | ALC201     |
| 012  | V7870311    | 26-11-2019        | 20-11-2019       | ALC201     |
| 013  | V7871316    | 27-11-2019        | 21-11-2019       | ALC201     |
| 013  | V7871315    | 27-11-2019        | 21-11-2019       | ALC201     |
| 014  | V7871273    | 27-11-2019        | 21-11-2019       | ALC201     |
| 014  | V7870921    | 27-11-2019        | 21-11-2019       | ALC201     |
| 015  | V7870043    | 26-11-2019        | 20-11-2019       | ALC201     |
| 016  | V7871322    | 26-11-2019        | 21-11-2019       | ALC201     |
| 017  | V7871319    | 26-11-2019        | 21-11-2019       | ALC201     |
| 018  | V7870437    | 27-11-2019        | 21-11-2019       | ALC201     |
| 019  | V7870438    | 27-11-2019        | 21-11-2019       | ALC201     |
| 020  | V7870452    | 27-11-2019        | 21-11-2019       | ALC201     |
| 021  | V7870460    | 27-11-2019        | 21-11-2019       | ALC201     |
| 022  | V7870378    | 27-11-2019        | 21-11-2019       | ALC201     |
| 023  | V7870444    | 27-11-2019        | 21-11-2019       | ALC201     |
| 024  | V7870307    | 28-11-2019        | 20-11-2019       | ALC201     |
| 025  | V7870442    | 26-11-2019        | 20-11-2019       | ALC201     |
| 026  | V7870326    | 26-11-2019        | 20-11-2019       | ALC201     |
| 027  | V7871318    | 27-11-2019        | 21-11-2019       | ALC201     |
| 028  | V7871225    | 27-11-2019        | 21-11-2019       | ALC201     |

## Echantillons en attente

| Code | Matrice | Réf. échantillon               |  |
|------|---------|--------------------------------|--|
| 015  | Sol     | GAL3-5_S0(0-1.5)_201119_D      |  |
| 016  | Sol     | GAL3-5_S1(0-0.3)_211119_D      |  |
| 017  | Sol     | GAL3-5_S1(0.3-1)_211119_D      |  |
| 018  | Sol     | GAL3-5_S2(0-0.6)_211119_D      |  |
| 019  | Sol     | GAL3-5_S2(0.6-1)_211119_D      |  |
| 020  | Sol     | GAL3-5_S2bis(0-1.1)_211119_D   |  |
| 021  | Sol     | GAL3-5_S2bis(1.1-1.3)_211119_D |  |
| 022  | Sol     | GAL3-5_S3(0-1)_211119_D        |  |
| 023  | Sol     | GAL3-5_S4(0-3)_211119_D        |  |
| 024  | Sol     | GAL3-5_S5(0-0.4)_201119_D      |  |
| 025  | Sol     | GAL3-5_S5(0.4-0.9)_201119_D    |  |
| 026  | Sol     | GAL3-5_S6(0-1.5)_201119_D      |  |
| 027  | Sol     | GAL3-5_S8(0-0.7)_211119_D      |  |
| 028  | Sol     | GAL3-5_S8(0.7-1.5)_211119_D    |  |

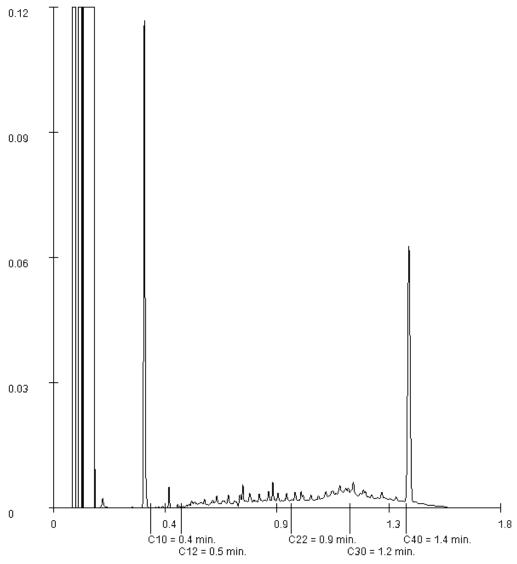






RAMBOLL FRANCE Page 19 sur 25

Rapport d'analyse Vincent DAMART


FRTOTMS020 Sol\_nov2019 GAL3-5 Projet Date de commande 27-11-2019 Référence du projet FRTOTMS020 Date de début 28-11-2019 Réf. du rapport Rapport du 07-12-2019 13154549 - 1

Référence de l'échantillon: 002

Information relative aux échantillons GAL3-5\_S1(0-0.3)\_211119

### Détermination de la chaîne de carbone

C9-C14 essence kérosène et pétrole C10-C16 diesel et gazole C10-C28 C20-C36 huile de moteur mazout C10-C36



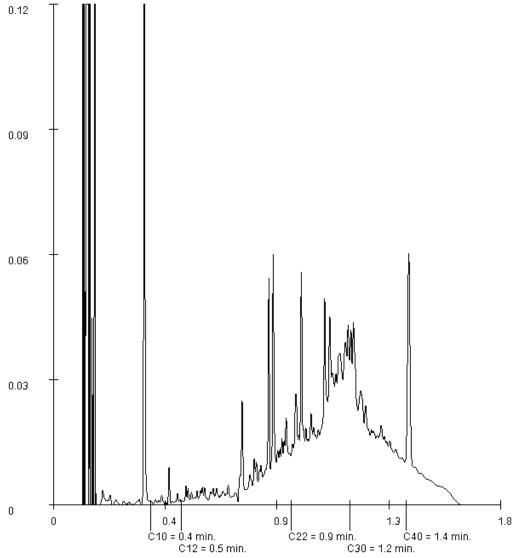






RAMBOLL FRANCE Page 20 sur 25 Rapport d'analyse Vincent DAMART

Projet


FRTOTMS020 Sol\_nov2019 GAL3-5 Date de commande 27-11-2019 Référence du projet FRTOTMS020 Date de début 28-11-2019 Réf. du rapport Rapport du 07-12-2019 13154549 - 1

Référence de l'échantillon: 003

Information relative aux échantillons GAL3-5\_S1(0.3-1)\_211119

#### Détermination de la chaîne de carbone

C9-C14 essence kérosène et pétrole C10-C16 diesel et gazole C10-C28 C20-C36 huile de moteur mazout C10-C36



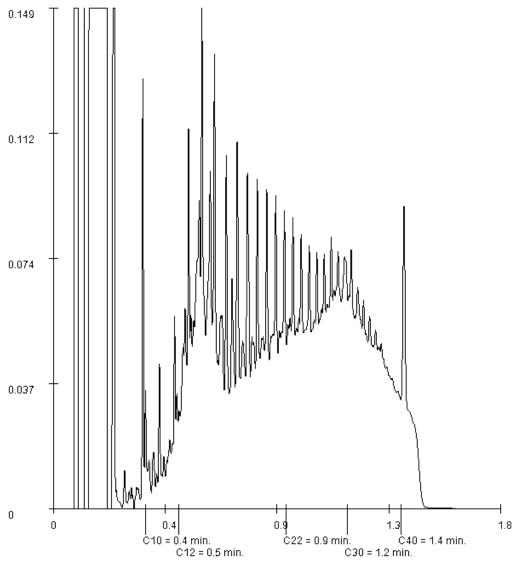






RAMBOLL FRANCE Page 21 sur 25 Rapport d'analyse Vincent DAMART

FRTOTMS020 Sol\_nov2019 GAL3-5 Projet


Date de commande 27-11-2019 Référence du projet FRTOTMS020 Date de début 28-11-2019 Réf. du rapport Rapport du 07-12-2019 13154549 - 1

Référence de l'échantillon: 005

Information relative aux échantillons GAL3-5\_S2(0.6-1)\_211119

#### Détermination de la chaîne de carbone

C9-C14 essence kérosène et pétrole C10-C16 diesel et gazole C10-C28 huile de moteur C20-C36 mazout C10-C36



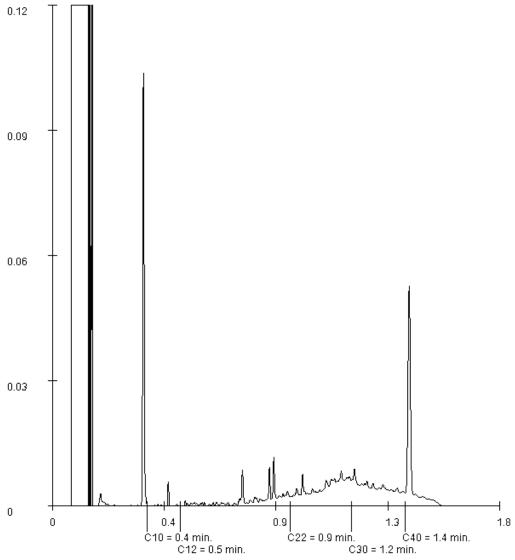






RAMBOLL FRANCE Page 22 sur 25 Rapport d'analyse Vincent DAMART

FRTOTMS020 Sol\_nov2019 GAL3-5 Projet Date de commande 27-11-2019 Référence du projet FRTOTMS020 Date de début 28-11-2019 Rapport du 07-12-2019


Réf. du rapport 13154549 - 1

Référence de l'échantillon: 006

Information relative aux échantillons GAL3-5\_S2bis(0-1.1)\_211119

#### Détermination de la chaîne de carbone

C9-C14 essence kérosène et pétrole C10-C16 diesel et gazole C10-C28 C20-C36 huile de moteur mazout C10-C36





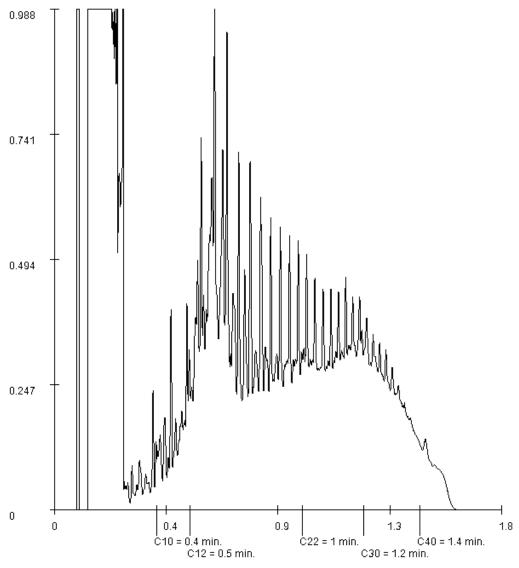




RAMBOLL FRANCE Page 23 sur 25 Rapport d'analyse Vincent DAMART

FRTOTMS020 Sol\_nov2019 GAL3-5 Projet

Référence du projet FRTOTMS020 Réf. du rapport 13154549 - 1


007 Référence de l'échantillon:

Information relative aux échantillons GAL3-5\_S2bis(1.1-1.3)\_211119

### Détermination de la chaîne de carbone

| essence             | C9-C14  |
|---------------------|---------|
| kérosène et pétrole | C10-C16 |
| diesel et gazole    | C10-C28 |
| huile de moteur     | C20-C36 |
| mazout              | C10-C36 |
|                     |         |

Les pics C10 et C40 sont introduits par le laboratoire et sont utilisés comme étalons internes.





Date de commande 27-11-2019

28-11-2019

07-12-2019

Date de début

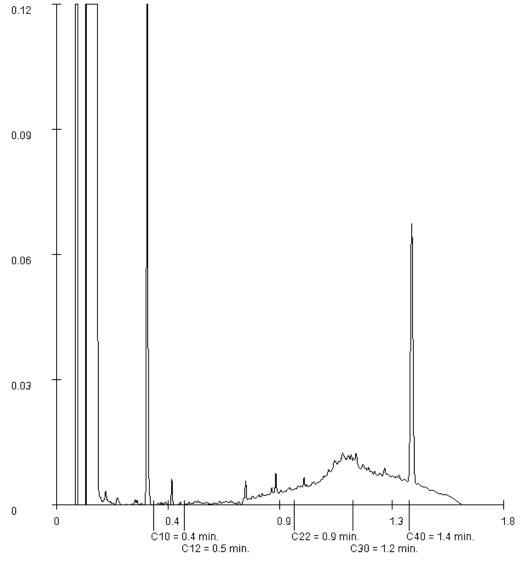
Rapport du





RAMBOLL FRANCE Page 24 sur 25 Rapport d'analyse Vincent DAMART

FRTOTMS020 Sol\_nov2019 GAL3-5 Projet Date de commande 27-11-2019 Référence du projet FRTOTMS020 Date de début 28-11-2019 Rapport du 07-12-2019


Réf. du rapport 13154549 - 1

Référence de l'échantillon: 800

Information relative aux échantillons GAL3-5\_S3(0-1)\_211119

#### Détermination de la chaîne de carbone

C9-C14 essence kérosène et pétrole C10-C16 diesel et gazole C10-C28 C20-C36 huile de moteur mazout C10-C36









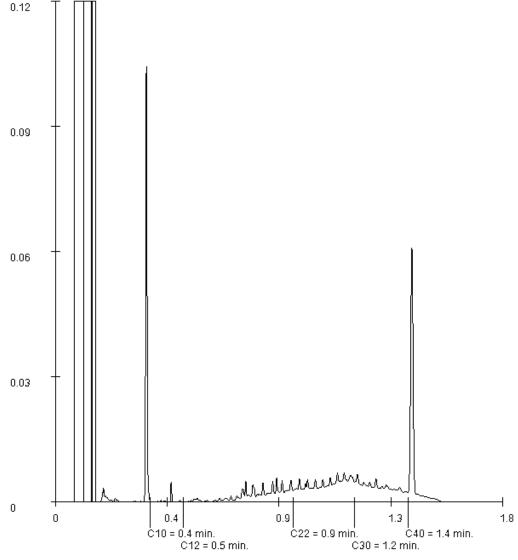
RAMBOLL FRANCE Page 25 sur 25 Rapport d'analyse

Vincent DAMART

FRTOTMS020 Sol\_nov2019 GAL3-5 Projet Date de commande 27-11-2019 Référence du projet FRTOTMS020 Date de début 28-11-2019

Rapport du

07-12-2019


Réf. du rapport 13154549 - 1

Référence de l'échantillon: 010

Information relative aux échantillons GAL3-5\_S5(0-0.4)\_201119

#### Détermination de la chaîne de carbone

C9-C14 essence kérosène et pétrole C10-C16 diesel et gazole C10-C28 C20-C36 huile de moteur mazout C10-C36









## Rapport d'analyse

#### SYNLAB Analytics & Services B.V.

Adresse de correspondance 99-101 avenue Louis Roche · F-92230 Gennevilliers Tel.: +33 (0)155 90 52 50 · Fax: +33 (0)155 90 52 51 www.synlab.fr

Page 1 sur 44

Vincent DAMART Immeuble Le Cézanne 155 rue de Broglie F-13100 AIX-EN-PROVENCE

RAMBOLL FRANCE

Votre nom de Projet : FRTOTMS020-P2 Sol\_sept2020\_GAL3-5

Votre référence de Projet : FRTOTMS020-P2 Référence du rapport SYNLAB : 13323822, version: 1.

Rotterdam, 06-10-2020

Cher(e) Madame/ Monsieur,

Ce rapport contient les résultats des analyses effectuées pour votre projet FRTOTMS020-P2. Les analyses ont été réalisées en accord avec votre commande. Les résultats rapportés se réfèrent aux échantillons tels qu'ils ont été reçus à SYNLAB. Le rapport reprend les descriptions des échantillons, la date de prélèvement (si fournie), le nom de projet et les analyses que vous avez indiqués sur le bon de commande. SYNLAB n'est pas responsable des données fournies par le client.

Ce rapport est constitué de 44 pages dont chromatogrammes si prévus, références normatives, informations sur les échantillons. Dans le cas d'une version 2 ou plus élevée, toute version antérieure n'est pas valable. Toutes les pages font partie intégrante de ce rapport, et seule une reproduction de l'ensemble du rapport est autorisée.

En cas de questions et/ou remarques concernant ce rapport, nous vous prions de contacter notre Service Client.

Toutes les analyses sont réalisées par SYNLAB Analytics & Services B.V., Steenhouwerstraat 15, Rotterdam, Pays Bas. Les analyses sous-traitées ou celles réalisées par les laboratoires SYNLAB en France (99-101 Avenue Louis Roche, Gennevilliers, France) sont indiquées sur le rapport.

Veuillez recevoir, Madame/ Monsieur, l'expression de nos cordiales salutations.







RAMBOLL FRANCE

Vincent DAMART

Page 2 sur 44

Rapport d'analyse

Réf. échantillon

GAL3-5\_MW1(0.9-1.5)\_200915

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5 Date de commande 29-09-2020

Référence du projet FRTOTMS020-P2
Réf. du rapport 13323822 - 1

Matrice

Sol

Code

001

Date de début 29-09-2020 Rapport du 06-10-2020

| 001 001                 |                 |         | N1(0.5-1.5)_200515 |          |       |        |         |
|-------------------------|-----------------|---------|--------------------|----------|-------|--------|---------|
| 002 Sol                 |                 |         | N1(0.4-0.9)_200915 |          |       |        |         |
| 003 Sol                 |                 | _       | V1(1.5-1.8)_200915 |          |       |        |         |
| 004 Sol                 |                 |         | N(0.9-1.2)_200921  |          |       |        |         |
| 006 Sol                 | GA              | L3-5_11 | S(0.6-0.9)_200921  |          |       |        |         |
| Analyse                 | Unité           | Q       | 001                | 002      | 003   | 004    | 006     |
| orétraitement de l'écha | ntillon         | Q       | Oui                | Oui      | Oui   | Oui    | Oui     |
| natière sèche           | % massiqu       | e Q     | 86.3               | 77.2     | 82.9  | 81.8   | 68.5    |
| METAUX                  |                 |         |                    |          |       |        |         |
| rsenic                  | mg/kg MS        | Q       | 6.8                | 14       | 16    | 10     | 15      |
| admium                  | mg/kg MS        | Q       | <0.2               | <0.2     | <0.2  | <0.2   | 0.24    |
| hrome                   | mg/kg MS        | Q       | 28                 | 37       | 37    | 33     | 35      |
| uivre                   | mg/kg MS        | Q       | 6.0                | 20       | 12    | 15     | 38      |
| nercure                 | mg/kg MS        | Q       | 0.14               | < 0.05   | <0.05 | < 0.05 | 0.08    |
| lomb                    | mg/kg MS        | Q       | 12                 | 25       | 16    | 21     | 50      |
| ickel                   | mg/kg MS        | Q       | 10                 | 32       | 32    | 25     | 29      |
| inc                     | mg/kg MS        | Q       | 15                 | 53       | 27    | 46     | 96      |
| COMPOSES AROMAT         | TIQUES VOLATILS |         |                    |          |       |        |         |
| enzène                  | mg/kg MS        | Q       | 0.04               | <0.02    | <0.02 | <0.02  | < 0.02  |
| oluène                  | mg/kg MS        | Q       | 0.06               | <0.02    | <0.02 | < 0.02 | 0.05    |
| thylbenzène             | mg/kg MS        | Q       | <0.02              | <0.02    | <0.02 | < 0.02 | 0.03    |
| rthoxylène              | mg/kg MS        | Q       | <0.02              | <0.02    | <0.02 | < 0.02 | < 0.02  |
| ara- et métaxylène      | mg/kg MS        | Q       | 0.04               | 0.02     | <0.02 | < 0.02 | 0.05    |
| ylènes                  | mg/kg MS        | Q       | 0.04               | <0.04    | <0.04 | <0.04  | 0.05    |
| BTEX totaux             | mg/kg MS        | Q       | 0.14               | <0.10    | <0.10 | <0.10  | 0.13    |
| HYDROCARBURES A         | ROMATIQUES POL  | YCYCLIQ | UES                |          |       |        |         |
| naphtalène              | mg/kg MS        | Q       | 0.06               | 0.88     | <0.01 | 0.01   | 0.15 2) |
| cénaphtylène            | mg/kg MS        | Q       | <0.04 1)           | <0.07 1) | <0.01 | <0.01  | 0.06 2) |
| cénaphtène              | mg/kg MS        | Q       | <0.04 1)           | 0.12     | <0.01 | <0.01  | 0.14 2) |
| uorène                  | mg/kg MS        | Q       | 0.04 2)            | 0.10     | <0.01 | <0.01  | 0.21 2) |
| hénanthrène             | mg/kg MS        | Q       | 0.39               | 0.21     | <0.01 | 0.04   | 0.50 2) |
| nthracène               | mg/kg MS        | Q       | 0.12 2)            | <0.07 1) | <0.01 | <0.01  | 0.15 2) |
| uoranthène              | mg/kg MS        | Q       | 0.87               | 0.11     | <0.01 | 0.07   | 0.14    |
| yrène                   | mg/kg MS        | Q       | 0.93               | 0.09     | <0.01 | 0.06   | 0.28    |
| enzo(a)anthracène       | mg/kg MS        | Q       | 0.56               | <0.07 1) | <0.01 | 0.04   | 0.12    |
| nrysène                 | mg/kg MS        | Q       | 0.52               | <0.07 1) | <0.01 | 0.04   | 0.13    |
| enzo(b)fluoranthène     | mg/kg MS        | Q       | 0.60               | <0.07 1) | <0.01 | 0.04   | 0.13    |
| enzo(k)fluoranthène     | mg/kg MS        | Q       | 0.30               | <0.07 1) | <0.01 | 0.02   | 0.07    |
| enzo(a)pyrène           | mg/kg MS        | Q       | 0.60               | <0.07 1) | <0.01 | 0.04   | 0.12    |
| ibenzo(ah)anthracène    |                 | Q       | 0.12               | <0.07 1) | <0.01 | <0.01  | 0.03    |
| enzo(ghi)pérylène       | mg/kg MS        | Q       | 0.49               | 0.19 2)  | <0.01 | 0.04   | 0.13    |
| ndéno(1,2,3-cd)pyrène   |                 | Q       | 0.47               | <0.07 1) | <0.01 | 0.03   | 0.08    |
| 10e110(1,2,3-00)pyrene  | i iiig/kg ivio  |         | 0.77               |          |       |        |         |

HYDROCARBURES TOTAUX







RAMBOLL FRANCE
Vincent DAMART

Page 3 sur 44

Rapport d'analyse

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5

Référence du projet FRTOTMS020-P2 Réf. du rapport 13323822 - 1 Date de commande 29-09-2020

Date de début 29-09-2020

Rapport du 06-10-2020

| Code | Matrice | Réf. échantillon           |  |
|------|---------|----------------------------|--|
| 001  | Sol     | GAL3-5_MW1(0.9-1.5)_200915 |  |
| 002  | Sol     | GAL3-5_MW1(0.4-0.9)_200915 |  |
| 003  | Sol     | GAL3-5_MW1(1.5-1.8)_200915 |  |
| 004  | Sol     | GAL3-5_T1N(0.9-1.2)_200921 |  |
| 006  | Sol     | GAL3-5_T1S(0.6-0.9)_200921 |  |

| Analyse                          | Unité    | Q | 001              | 002              | 003    | 004    | 006               |
|----------------------------------|----------|---|------------------|------------------|--------|--------|-------------------|
| Hydrocarbures Volatils C5-C10    | mg/kg MS | Q | <10              | <10              | <10    | <10    | 21                |
| fraction C10-C12                 | mg/kg MS |   | 58               | <5               | <5     | <5     | 100               |
| fraction C12-C16                 | mg/kg MS |   | 340              | 41               | <10    | <10    | 670               |
| fraction C16-C21                 | mg/kg MS |   | 200              | 120              | <15    | <15    | 540               |
| fraction aromat. >C6-C7          | mg/kg MS | Q | <0.4             | <0.4             | <0.4   | <0.4   | <0.4              |
| fraction aromat. >C7-C8          | mg/kg MS | Q | 0.06             | < 0.05           | < 0.05 | < 0.05 | < 0.05            |
| fraction aromat. >C8-C10         | mg/kg MS | Q | <0.3             | <0.3             | < 0.3  | <0.3   | 4.7               |
| fraction aliphat. >C5-C6         | mg/kg MS | Q | <0.5             | <0.5             | <0.5   | <0.5   | <0.5              |
| fraction aliphat. >C6-C8         | mg/kg MS | Q | <0.6             | <0.6             | <0.6   | <0.6   | 3.4               |
| fraction aliphat. >C8-C10        | mg/kg MS | Q | <0.6             | <0.6             | 0.61   | <0.6   | 13                |
| fraction C21-C35                 | mg/kg MS |   | 310              | 430              | <10    | <10    | 1000              |
| fraction C35-C40                 | mg/kg MS |   | 45 <sup>3)</sup> | 67 <sup>3)</sup> | <15    | <15    | 120 <sup>3)</sup> |
| hydrocarbures totaux C10-<br>C40 | mg/kg MS | Q | 960              | 650              | <20    | <20    | 2400              |







RAMBOLL FRANCE

Vincent DAMART

Page 4 sur 44

Rapport d'analyse

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5

Référence du projet FRTOTMS020-P2 Réf. du rapport 13323822 - 1 Date de commande 29-09-2020
Date de début 29-09-2020
Rapport du 06-10-2020

#### Commentaire

Limite de quantification élevée en raison d'une dilution nécessaire.

2 Résultat fourni à titre indicatif en raison de la présence de composants interférants 3 Présence de composants supérieurs à C40, cela n influence pas le résultat rapporté







Matrice

Code

RAMBOLL FRANCE

Vincent DAMART

Page 5 sur 44

Rapport d'analyse

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5 Date de commande 29-09-2020

Réf. échantillon

 Référence du projet
 FRTOTMS020-P2
 Date de début
 29-09-2020

 Réf. du rapport
 13323822 - 1
 Rapport du
 06-10-2020

| 007 Sol                                      | GA                       | L3-5_T | 1S(0.9-1.2)_200921                       |                |                             |                            |                            |
|----------------------------------------------|--------------------------|--------|------------------------------------------|----------------|-----------------------------|----------------------------|----------------------------|
| 008 Sol                                      | GA                       | L3-5_T | 2E(1-1.5)_200918                         |                |                             |                            |                            |
| 010 Sol                                      | GAL3-5_T2O(1-1.5)_200918 |        |                                          |                |                             |                            |                            |
| 012 Sol                                      | GA                       | L3-5_T | 3N(0.8-1.1)_200921                       |                |                             |                            |                            |
| 013 Sol                                      | GA                       | L3-5_T | 3S(0.8-1.1)_200921                       |                |                             |                            |                            |
| Analyse                                      | Unité                    | Q      | 007                                      | 008            | 010                         | 012                        | 013                        |
| prétraitement de l'échantillon               |                          | Q      | Oui                                      | Oui            | Oui                         | Oui                        | Oui                        |
| matière sèche                                | % massiqu                |        | 53.0                                     | 75.0           | 75.7                        | 69.7                       | 72.2                       |
| METAUX                                       |                          |        |                                          |                |                             |                            |                            |
| arsenic                                      | mg/kg MS                 | Q      | 14                                       | 22             | 9.6                         | 24                         | 23                         |
| cadmium                                      | mg/kg MS                 | Q      | 0.39                                     | 0.22           | <0.2                        | 0.23                       | <0.2                       |
| chrome                                       | mg/kg MS                 | Q      | 37                                       | 54             | 34                          | 34                         | 39                         |
| cuivre                                       | mg/kg MS                 | Q      | 66                                       | 26             | 16                          | 30                         | 20                         |
| mercure                                      | mg/kg MS                 | Q      | 0.19                                     | < 0.05         | 0.30                        | 0.11                       | <0.05                      |
| plomb                                        | mg/kg MS                 | Q      | 99                                       | 27             | 24                          | 34                         | 24                         |
| nickel                                       | mg/kg MS                 | Q      | 26                                       | 44             | 24                          | 29                         | 34                         |
| zinc                                         | mg/kg MS                 | Q      | 150                                      | 85             | 41                          | 77                         | 75                         |
| COMPOSES AROMATIQUES                         | VOLATILS                 |        |                                          |                |                             |                            |                            |
| benzène                                      | mg/kg MS                 | Q      | 0.07                                     | <0.02          | <0.02                       | <0.02                      | <0.02                      |
| toluène                                      | mg/kg MS                 | Q      | 6.1                                      | <0.02          | <0.02                       | 0.04                       | <0.02                      |
| éthylbenzène                                 | mg/kg MS                 | Q      | 5.7                                      | <0.02          | <0.02                       | <0.02                      | < 0.02                     |
| orthoxylène                                  | mg/kg MS                 | Q      | 7.0                                      | <0.02          | <0.02                       | <0.02                      | <0.02                      |
| para- et métaxylène                          | mg/kg MS                 | Q      | 15                                       | <0.02          | <0.02                       | 0.04                       | <0.02                      |
| xylènes                                      | mg/kg MS                 | Q      | 22                                       | <0.04          | <0.04                       | 0.04                       | <0.04                      |
| BTEX totaux                                  | mg/kg MS                 | Q      | 34                                       | <0.10          | <0.10                       | <0.10                      | <0.10                      |
| HYDROCARBURES AROMA                          |                          |        |                                          |                |                             | 2)                         |                            |
| naphtalène                                   | mg/kg MS                 | Q      | 24                                       | <0.01          | 0.02                        | 0.06 2)                    | <0.01                      |
| acénaphtylène                                | mg/kg MS                 | Q      | 0.39 2)                                  | <0.01          | <0.01                       | <0.01                      | <0.01                      |
| acénaphtène                                  | mg/kg MS                 | Q      | 0.64 2)                                  | <0.01          | 0.01                        | 0.02                       | <0.01                      |
| fluorène                                     | mg/kg MS                 | Q      | 0.80 2)                                  | <0.01          | <0.01<br>0.03 <sup>2)</sup> | 0.02 2)                    | <0.01                      |
| phénanthrène                                 | mg/kg MS                 | Q      | 3.7                                      | <0.01          |                             | 0.13<br>0.04 <sup>2)</sup> | 0.03                       |
| anthracène                                   | mg/kg MS                 | Q      | 0.56 <sup>2)</sup><br>0.12 <sup>2)</sup> | <0.01          | 0.01                        |                            | <0.01                      |
| fluoranthène                                 | mg/kg MS                 | Q      | 0.12<br>0.57 <sup>2)</sup>               | <0.01          | 0.06                        | 0.23                       | 0.06<br>0.05 <sup>2)</sup> |
| pyrène                                       | mg/kg MS                 | Q<br>Q |                                          | <0.01<br><0.01 | 0.06                        | 0.23<br>0.16               |                            |
| benzo(a)anthracène                           | mg/kg MS                 |        | 0.09                                     |                | 0.04                        |                            | 0.04<br>0.03 <sup>2)</sup> |
| chrysène                                     | mg/kg MS<br>mg/kg MS     | Q<br>Q | 0.25<br><0.06 1)                         | <0.01<br><0.01 | 0.03<br>0.04                | 0.13<br>0.17               | 0.03                       |
| benzo(b)fluoranthène<br>benzo(k)fluoranthène | mg/kg MS                 | Q      | <0.06 1)                                 | <0.01          | 0.04                        | 0.17                       | 0.03                       |
| benzo(a)pyrène                               | mg/kg MS                 | Q      | 0.10                                     | <0.01          | 0.02                        | 0.09                       | 0.03                       |
| dibenzo(ah)anthracène                        | mg/kg MS                 | Q      | <0.06 1)                                 | <0.01          | <0.04                       | 0.04                       | <0.01                      |
| benzo(ghi)pérylène                           | mg/kg MS                 | Q      | 0.09                                     | <0.01          | 0.04                        | 0.19                       | 0.02                       |
| indéno(1,2,3-cd)pyrène                       | mg/kg MS                 | Q      | <0.06 1)                                 | <0.01          | 0.03                        | 0.15                       | 0.02                       |
| Somme des HAP (16) - EPA                     | mg/kg MS                 | Q      | 32                                       | <0.16          | 0.43                        | 1.8                        | 0.33                       |
| 55 (10) EI A                                 | mg/kg MO                 | •      | J <u>L</u>                               | 30.10          | 0.40                        | 1.0                        | 0.00                       |

HYDROCARBURES TOTAUX







RAMBOLL FRANCE

Vincent DAMART

Page 6 sur 44

Rapport d'analyse

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5

Référence du projet FRTOTMS020-P2 Réf. du rapport 13323822 - 1 Date de commande 29-09-2020

Date de début 29-09-2020

Rapport du 06-10-2020

| Code | Matrice | Réf. échantillon           |  |
|------|---------|----------------------------|--|
| 007  | Sol     | GAL3-5_T1S(0.9-1.2)_200921 |  |
| 800  | Sol     | GAL3-5_T2E(1-1.5)_200918   |  |
| 010  | Sol     | GAL3-5_T2O(1-1.5)_200918   |  |
| 012  | Sol     | GAL3-5_T3N(0.8-1.1)_200921 |  |
| 013  | Sol     | GAL3-5_T3S(0.8-1.1)_200921 |  |

| Analyse                          | Unité    | Q | 007                | 008    | 010    | 012   | 013    |
|----------------------------------|----------|---|--------------------|--------|--------|-------|--------|
| Hydrocarbures Volatils C5-C10    | mg/kg MS | Q | 220                | <10    | <10    | <10   | <10    |
| fraction C10-C12                 | mg/kg MS |   | 900                | <5     | <5     | 8     | <5     |
| fraction C12-C16                 | mg/kg MS |   | 3200 <sup>4)</sup> | <10    | 19     | 85    | <10    |
| fraction C16-C21                 | mg/kg MS |   | 2300               | <15    | 18     | 81    | <15    |
| fraction aromat. >C6-C7          | mg/kg MS | Q | <4.0 1)            | <0.4   | <0.4   | <0.4  | <0.4   |
| fraction aromat. >C7-C8          | mg/kg MS | Q | 4.1                | < 0.05 | < 0.05 | <0.05 | < 0.05 |
| fraction aromat. >C8-C10         | mg/kg MS | Q | 120                | < 0.3  | <0.3   | <0.3  | <0.3   |
| fraction aliphat. >C5-C6         | mg/kg MS | Q | <5.0 <sup>1)</sup> | <0.5   | <0.5   | <0.5  | <0.5   |
| fraction aliphat. >C6-C8         | mg/kg MS | Q | 43                 | <0.6   | <0.6   | <0.6  | <0.6   |
| fraction aliphat. >C8-C10        | mg/kg MS | Q | 52                 | <0.6   | 0.98   | <0.6  | <0.6   |
| fraction C21-C35                 | mg/kg MS |   | 4200               | <10    | 48     | 190   | <10    |
| fraction C35-C40                 | mg/kg MS |   | 460 <sup>3)</sup>  | <15    | <15    | 26    | <15    |
| hydrocarbures totaux C10-<br>C40 | mg/kg MS | Q | 11000              | <20    | 93     | 390   | <20    |







RAMBOLL FRANCE
Vincent DAMART

Page 7 sur 44

Rapport d'analyse

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5

Référence du projet FRTOTMS020-P2
Réf. du rapport 13323822 - 1

Date de commande 29-09-2020
Date de début 29-09-2020
Rapport du 06-10-2020

#### Commentaire

| 1 | Limite de quantification élevée en raison d'une dilution nécessaire.                  |
|---|---------------------------------------------------------------------------------------|
| 2 | Résultat fourni à titre indicatif en raison de la présence de composants interférants |
| 3 | Présence de composants supérieurs à C40, cela n influence pas le résultat rapporté    |
| 4 | Présence de composants inférieurs à C10, cela ninfluence pas le résultat rapporté     |







RAMBOLL FRANCE
Vincent DAMART

Rapport d'analyse

Réf. échantillon

Page 8 sur 44

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5 Date de commande 29-09-2020

Référence du projet FRTOTMS020-P2 Réf. du rapport 13323822 <sup>-</sup> 1

Matrice

Code

Date de début 29-09-2020 Rapport du 06-10-2020

| 015 Sol                        | GA                                                                                                               | GAL3-5_T4E(1-1.2)_200921 |         |         |        |        |        |
|--------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------|---------|---------|--------|--------|--------|
| 016 Sol                        | GAL3-5_T4O(1-1.2)_200921<br>GAL3-5_T5N(1.1-1.6)_200917<br>GAL3-5_T5S(0.9-1.5)_200916<br>GAL3-5_T6N(1-1.2)_200916 |                          |         |         |        |        |        |
| 018 Sol                        |                                                                                                                  |                          |         |         |        |        |        |
| 020 Sol                        |                                                                                                                  |                          |         |         |        |        |        |
| 022 Sol                        |                                                                                                                  |                          |         |         |        |        |        |
| Analyse                        | Unité                                                                                                            | Q                        | 015     | 016     | 018    | 020    | 022    |
| Allalyse                       | Office                                                                                                           | <u> </u>                 | 013     | 010     | 010    | 020    | 022    |
| orétraitement de l'échantillor | า                                                                                                                | Q                        | Oui     | Oui     | Oui    | Oui    | Oui    |
| matière sèche                  | % massiqu                                                                                                        |                          | 74.1    | 76.4    | 79.5   | 77.3   | 77.5   |
| METAUX                         |                                                                                                                  |                          |         |         |        |        |        |
| arsenic                        | mg/kg MS                                                                                                         | Q                        | 20      | 23      | 25     | 25     | 16     |
| admium                         | mg/kg MS                                                                                                         | Q                        | <0.2    | <0.2    | <0.2   | <0.2   | <0.2   |
| chrome                         | mg/kg MS                                                                                                         | Q                        | 36      | 54      | 36     | 40     | 34     |
| cuivre                         | mg/kg MS                                                                                                         | Q                        | 37      | 22      | 16     | 15     | 14     |
| nercure                        | mg/kg MS                                                                                                         | Q                        | 0.07    | <0.05   | <0.05  | <0.05  | < 0.05 |
| lomb                           | mg/kg MS                                                                                                         | Q                        | 45      | 31      | 19     | 19     | 18     |
| ickel                          | mg/kg MS                                                                                                         | Q                        | 30      | 46      | 31     | 33     | 33     |
| zinc                           | mg/kg MS                                                                                                         | Q                        | 96      | 88      | 46     | 50     | 54     |
| COMPOSES AROMATIQUE            | ES VOLATILS                                                                                                      |                          |         |         |        |        |        |
| enzène                         | mg/kg MS                                                                                                         | Q                        | 0.06    | <0.02   | <0.02  | <0.02  | < 0.02 |
| oluène                         | mg/kg MS                                                                                                         | Q                        | 0.19    | <0.02   | <0.02  | <0.02  | < 0.02 |
| thylbenzène                    | mg/kg MS                                                                                                         | Q                        | 0.23    | <0.02   | <0.02  | <0.02  | < 0.02 |
| orthoxylène                    | mg/kg MS                                                                                                         | Q                        | 0.22    | <0.02   | <0.02  | <0.02  | < 0.02 |
| ara- et métaxylène             | mg/kg MS                                                                                                         | Q                        | 0.48    | <0.02   | <0.02  | <0.02  | < 0.02 |
| kylènes                        | mg/kg MS                                                                                                         | Q                        | 0.70    | <0.04   | < 0.04 | < 0.04 | < 0.04 |
| BTEX totaux                    | mg/kg MS                                                                                                         | Q                        | 1.2     | <0.10   | <0.10  | <0.10  | <0.10  |
| HYDROCARBURES AROM             | ATIQUES POL                                                                                                      | YCYCLIQU                 | ES      |         |        |        |        |
| naphtalène                     | mg/kg MS                                                                                                         | Q                        | 0.70    | 0.16    | <0.01  | <0.01  | < 0.01 |
| cénaphtylène                   | mg/kg MS                                                                                                         | Q                        | 0.03 2) | <0.01   | <0.01  | <0.01  | <0.01  |
| acénaphtène                    | mg/kg MS                                                                                                         | Q                        | 0.07    | 0.02    | <0.01  | <0.01  | < 0.01 |
| luorène                        | mg/kg MS                                                                                                         | Q                        | 0.10 2) | 0.01    | <0.01  | <0.01  | <0.01  |
| hénanthrène                    | mg/kg MS                                                                                                         | Q                        | 0.29    | 0.03    | <0.01  | <0.01  | <0.01  |
| anthracène                     | mg/kg MS                                                                                                         | Q                        | 0.07 2) | <0.01   | <0.01  | <0.01  | <0.01  |
| luoranthène                    | mg/kg MS                                                                                                         | Q                        | 0.21    | 0.02 2) | <0.01  | <0.01  | <0.01  |
| pyrène                         | mg/kg MS                                                                                                         | Q                        | 0.25    | 0.01    | <0.01  | <0.01  | < 0.01 |
| enzo(a)anthracène              | mg/kg MS                                                                                                         | Q                        | 0.14    | <0.01   | <0.01  | <0.01  | < 0.01 |
| hrysène                        | mg/kg MS                                                                                                         | Q                        | 0.13    | <0.01   | <0.01  | <0.01  | <0.01  |
| enzo(b)fluoranthène            | mg/kg MS                                                                                                         | Q                        | 0.15    | <0.01   | <0.01  | <0.01  | <0.01  |
| enzo(k)fluoranthène            | mg/kg MS                                                                                                         | Q                        | 0.07    | <0.01   | <0.01  | <0.01  | <0.01  |
| enzo(a)pyrène                  | mg/kg MS                                                                                                         | Q                        | 0.14    | <0.01   | <0.01  | <0.01  | <0.01  |
| dibenzo(ah)anthracène          | mg/kg MS                                                                                                         | Q                        | 0.04    | <0.01   | <0.01  | <0.01  | <0.01  |
| enzo(ghi)pérylène              | mg/kg MS                                                                                                         | Q                        | 0.15    | <0.01   | <0.01  | <0.01  | <0.01  |
| ndéno(1,2,3-cd)pyrène          | mg/kg MS                                                                                                         | Q                        | 0.11    | <0.01   | <0.01  | <0.01  | <0.01  |
| Somme des HAP (16) - EPA       | mg/kg MS                                                                                                         | Q                        | 2.7     | 0.29    | <0.16  | <0.16  | <0.16  |

HYDROCARBURES TOTAUX







RAMBOLL FRANCE
Vincent DAMART

Page 9 sur 44

Rapport d'analyse

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5

Référence du projet FRTOTMS020-P2 Réf. du rapport 13323822 - 1 Date de commande 29-09-2020
Date de début 29-09-2020
Rapport du 06-10-2020

| Code | Matrice | Réf. échantillon           |  |
|------|---------|----------------------------|--|
| 015  | Sol     | GAL3-5_T4E(1-1.2)_200921   |  |
| 016  | Sol     | GAL3-5_T4O(1-1.2)_200921   |  |
| 018  | Sol     | GAL3-5_T5N(1.1-1.6)_200917 |  |
| 020  | Sol     | GAL3-5_T5S(0.9-1.5)_200916 |  |
| 022  | Sol     | GAL3-5_T6N(1-1.2)_200916   |  |

| Analyse                          | Unité    | Q | 015              | 016    | 018    | 020   | 022    |
|----------------------------------|----------|---|------------------|--------|--------|-------|--------|
| Hydrocarbures Volatils C5-C10    | mg/kg MS | Q | 15               | <10    | <10    | <10   | <10    |
| fraction C10-C12                 | mg/kg MS |   | 46               | <5     | <5     | <5    | <5     |
| fraction C12-C16                 | mg/kg MS |   | 270              | <10    | <10    | <10   | <10    |
| fraction C16-C21                 | mg/kg MS |   | 200              | <15    | <15    | <15   | <15    |
| fraction aromat. >C6-C7          | mg/kg MS | Q | <0.4             | <0.4   | <0.4   | <0.4  | <0.4   |
| fraction aromat. >C7-C8          | mg/kg MS | Q | 0.14             | < 0.05 | < 0.05 | <0.05 | < 0.05 |
| fraction aromat. >C8-C10         | mg/kg MS | Q | 5.2              | <0.3   | <0.3   | <0.3  | <0.3   |
| fraction aliphat. >C5-C6         | mg/kg MS | Q | <0.5             | <0.5   | <0.5   | <0.5  | <0.5   |
| fraction aliphat. >C6-C8         | mg/kg MS | Q | 3.1              | <0.6   | <0.6   | <0.6  | <0.6   |
| fraction aliphat. >C8-C10        | mg/kg MS | Q | 6.5              | <0.6   | <0.6   | <0.6  | <0.6   |
| fraction C21-C35                 | mg/kg MS |   | 420              | <10    | <10    | <10   | <10    |
| fraction C35-C40                 | mg/kg MS |   | 56 <sup>3)</sup> | <15    | <15    | <15   | <15    |
| hydrocarbures totaux C10-<br>C40 | mg/kg MS | Q | 990              | <20    | <20    | <20   | <20    |







RAMBOLL FRANCE
Vincent DAMART

Page 10 sur 44

Rapport d'analyse

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5

Référence du projet FRTOTMS020-P2 Réf. du rapport 13323822 - 1 Date de commande 29-09-2020
Date de début 29-09-2020
Rapport du 06-10-2020

#### Commentaire

2 Résultat fourni à titre indicatif en raison de la présence de composants interférants 3 Présence de composants supérieurs à C40, cela n influence pas le résultat rapporté







RAMBOLL FRANCE

Vincent DAMART

Page 11 sur 44

Rapport d'analyse

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5

Réf. échantillon

Référence du projet FRTOTMS020-P2 Réf. du rapport 13323822 - 1

Matrice

Code

Date de commande 29-09-2020

Date de début 29-09-2020

Rapport du 06-10-2020

| Coue         | Wattice             | IXCI       | . conan | unon              |             |         |        |        |
|--------------|---------------------|------------|---------|-------------------|-------------|---------|--------|--------|
| 025          | Sol                 | GA         | L3-5_T6 | S(1-1.3)_200916   |             |         |        |        |
| 026          | Sol                 | GA         | L3-5_T7 | N(0-0.5)_200917   |             |         |        |        |
| 027          | Sol                 | GA         | L3-5_T7 | N(1.6-1.8)_200917 |             |         |        |        |
| 029          | Sol                 |            |         | S(0.6-1)_200916   |             |         |        |        |
| 032          | Sol                 | GA         | L3-5_T8 | N(1.1-1.6)_200916 |             |         |        |        |
|              |                     |            |         |                   |             |         |        |        |
| Analyse      |                     | Unité      | Q       | 025               | 026         | 027     | 029    | 032    |
| broyage      |                     | -          |         |                   |             | Oui     |        |        |
| prétraitemer | nt de l'échantillon |            | Q       | Oui               | Oui         | Oui     | Oui    | Oui    |
| matière sèch | ne                  | % massiqu  | e Q     | 84.2              | 70.0        | 86.0    | 73.6   | 73.9   |
| METAUX       |                     |            |         |                   |             |         |        |        |
| arsenic      |                     | mg/kg MS   | Q       | 8.6               | 10          | 13      | 15     | 12     |
| cadmium      |                     | mg/kg MS   | Q       | <0.2              | 0.23        | <0.2    | <0.2   | <0.2   |
| chrome       |                     | mg/kg MS   | Q       | 58                | 50          | 77      | 54     | 40     |
| cuivre       |                     | mg/kg MS   | Q       | 7.4               | 26          | 13      | 24     | 18     |
| mercure      |                     | mg/kg MS   | Q       | <0.05             | 0.14        | < 0.05  | < 0.05 | < 0.05 |
| plomb        |                     | mg/kg MS   | Q       | 10                | 50          | 14      | 29     | 23     |
| nickel       |                     | mg/kg MS   | Q       | 16                | 49          | 25      | 48     | 35     |
| zinc         |                     | mg/kg MS   | Q       | 23                | 78          | 31      | 81     | 76     |
| COMPOSES     | S AROMATIQUES       | VOLATILS   |         |                   |             |         |        |        |
| benzène      |                     | mg/kg MS   | Q       | <0.02             | 0.03        | <0.02   | <0.02  | < 0.02 |
| toluène      |                     | mg/kg MS   | Q       | <0.02             | 0.05        | <0.02   | <0.02  | <0.02  |
| éthylbenzèn  | е                   | mg/kg MS   | Q       | <0.02             | 0.12        | <0.02   | <0.02  | <0.02  |
| orthoxylène  |                     | mg/kg MS   | Q       | <0.02             | 0.38        | <0.02   | <0.02  | < 0.02 |
| para- et mét | axylène             | mg/kg MS   | Q       | <0.02             | 2.9         | <0.02   | <0.02  | <0.02  |
| xylènes      |                     | mg/kg MS   | Q       | <0.04             | 3.3         | <0.04   | <0.04  | < 0.04 |
| BTEX totaux  | (                   | mg/kg MS   | Q       | <0.10             | 3.5         | <0.10   | <0.10  | <0.10  |
| HYDROCAF     | RBURES AROMA        | TIQUES POL | YCYCLIQ | UES               | 0)          |         |        |        |
| naphtalène   |                     | mg/kg MS   | Q       | <0.01             | 0.28 2)     | 0.10 2) | <0.01  | <0.01  |
| acénaphtylè  | ne                  | mg/kg MS   | Q       | <0.01             | 0.50 2)     | 0.03 2) | <0.01  | <0.01  |
| acénaphtèn   | Э                   | mg/kg MS   | Q       | <0.01             | 4.3 2)      | 0.11    | <0.01  | <0.01  |
| fluorène     |                     | mg/kg MS   | Q       | <0.01             | 2.9 2)      | 0.10    | <0.01  | <0.01  |
| phénanthrèr  | ne                  | mg/kg MS   | Q       | 0.01              | 8.0 2)      | 0.30    | <0.01  | <0.01  |
| anthracène   |                     | mg/kg MS   | Q       | <0.01             | 2.1 2)      | 0.07 2) | <0.01  | <0.01  |
| fluoranthène | )                   | mg/kg MS   | Q       | 0.02              | <0.08 5) 1) | 0.10 2) | <0.01  | <0.01  |
| pyrène       |                     | mg/kg MS   | Q       | 0.02              | 1.3 5)      | 0.12    | <0.01  | <0.01  |
| benzo(a)ant  | hracène             | mg/kg MS   | Q       | 0.01 2)           | 0.28        | 0.04    | <0.01  | <0.01  |
| chrysène     |                     | mg/kg MS   | Q       | <0.01             | 0.75        | 0.05    | <0.01  | <0.01  |
| benzo(b)fluc | oranthène           | mg/kg MS   | Q       | <0.01             | 0.28 2)     | 0.03 2) | <0.01  | <0.01  |
| benzo(k)fluo |                     | mg/kg MS   | Q       | <0.01             | 0.14        | 0.02    | <0.01  | <0.01  |
| benzo(a)pyr  |                     | mg/kg MS   | Q       | <0.01             | 0.46        | 0.03    | <0.01  | <0.01  |
| dibenzo(ah)  |                     | mg/kg MS   | Q       | <0.01             | <0.08 1)    | 0.01    | <0.01  | <0.01  |
| benzo(ghi)p  | -                   | mg/kg MS   | Q       | <0.01             | 0.31        | 0.03    | <0.01  | <0.01  |
| indéno(1,2,3 |                     | mg/kg MS   | Q       | <0.01             | <0.08 1)    | 0.03    | <0.01  | <0.01  |
| Somme des    | HAP (16) - EPA      | mg/kg MS   | Q       | <0.16             | 22          | 1.2     | <0.16  | <0.16  |







RAMBOLL FRANCE

Vincent DAMART

Page 12 sur 44

Rapport d'analyse

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5

Référence du projet FRTOTMS020-P2 Réf. du rapport 13323822 - 1 Date de commande 29-09-2020
Date de début 29-09-2020
Rapport du 06-10-2020

| Code | Matrice | Réf. échantillon           |  |
|------|---------|----------------------------|--|
| 025  | Sol     | GAL3-5_T6S(1-1.3)_200916   |  |
| 026  | Sol     | GAL3-5_T7N(0-0.5)_200917   |  |
| 027  | Sol     | GAL3-5_T7N(1.6-1.8)_200917 |  |
| 029  | Sol     | GAL3-5_T7S(0.6-1)_200916   |  |
| 032  | Sol     | GAL3-5_T8N(1.1-1.6)_200916 |  |

| Analyse                           | Unité    | Q | 025    | 026                | 027    | 029    | 032    |
|-----------------------------------|----------|---|--------|--------------------|--------|--------|--------|
|                                   |          |   |        |                    |        |        |        |
| HYDROCARBURES TOTAU               | X        |   |        |                    |        |        |        |
| Hydrocarbures Volatils C5-<br>C10 | mg/kg MS | Q | <10    | 93                 | <10    | <10    | <10    |
| fraction C10-C12                  | mg/kg MS |   | <5     | 870                | 24     | <5     | <5     |
| fraction C12-C16                  | mg/kg MS |   | <10    | 6100               | 130    | <10    | <10    |
| fraction C16-C21                  | mg/kg MS |   | <15    | 11000              | 120    | <15    | <15    |
| fraction aromat. >C6-C7           | mg/kg MS | Q | <0.4   | <0.4               | <0.4   | <0.4   | <0.4   |
| fraction aromat. >C7-C8           | mg/kg MS | Q | < 0.05 | 0.05               | < 0.05 | < 0.05 | < 0.05 |
| fraction aromat. >C8-C10          | mg/kg MS | Q | <0.3   | 27                 | <0.3   | <0.3   | <0.3   |
| fraction aliphat. >C5-C6          | mg/kg MS | Q | <0.5   | 3.4                | <0.5   | <0.5   | <0.5   |
| fraction aliphat. >C6-C8          | mg/kg MS | Q | <0.6   | 34                 | <0.6   | <0.6   | <0.6   |
| fraction aliphat. >C8-C10         | mg/kg MS | Q | <0.6   | 29                 | 2.1    | <0.6   | <0.6   |
| fraction C21-C35                  | mg/kg MS |   | 11     | 20000              | 200    | <10    | <10    |
| fraction C35-C40                  | mg/kg MS |   | <15    | 2600 <sup>3)</sup> | 33     | <15    | <15    |
| hydrocarbures totaux C10-<br>C40  | mg/kg MS | Q | <20    | 41000              | 510    | <20    | <20    |







RAMBOLL FRANCE

Vincent DAMART

Page 13 sur 44

Rapport d'analyse

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5

Référence du projet FRTOTMS020-P2 Réf. du rapport 13323822 - 1 Date de commande 29-09-2020
Date de début 29-09-2020
Rapport du 06-10-2020

#### Commentaire

| 1 | Limite de quantification élevée en raison d'une dilution nécessaire.                  |
|---|---------------------------------------------------------------------------------------|
| 2 | Résultat fourni à titre indicatif en raison de la présence de composants interférants |
| 3 | Présence de composants supérieurs à C40, cela n influence pas le résultat rapporté    |
| 5 | Concentration indicative due à un haut taux de récupération des étalons internes      |







RAMBOLL FRANCE
Vincent DAMART

Page 14 sur 44

Rapport d'analyse

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5

Réf. échantillon

Référence du projet FRTOTMS020-P2 Réf. du rapport 13323822 - 1

Matrice

Code

Date de commande 29-09-2020

Date de début 29-09-2020

06-10-2020

Rapport du

| 038<br>040                     | Sol<br>Sol                  |                      | 13-5 TON  | 1/0 4 0 4) 000047 |                              |                |                |                |
|--------------------------------|-----------------------------|----------------------|-----------|-------------------|------------------------------|----------------|----------------|----------------|
| 040                            |                             |                      | LO 0_101  | N(0.1-0.4)_200917 |                              |                |                |                |
|                                | C-1                         | GA                   | L3-5_T91  | N(1.7-1.9)_200917 |                              |                |                |                |
| )43<br>                        | Sol                         | GA                   | L3-5_T98  | S(1.4-1.7)_200917 |                              |                |                |                |
|                                | Sol                         | GA                   | L3-5_T10  | N(1.6-1.8)_200917 |                              |                |                |                |
| Analyse                        |                             | Unité                | Q         | 034               | 037                          | 038            | 040            | 043            |
| royage                         |                             | -                    |           |                   |                              | Oui            |                |                |
|                                |                             |                      |           |                   |                              |                |                |                |
| rétraitement                   | de l'échantillon            |                      | Q         | Oui               | Oui                          | Oui            | Oui            | Oui            |
| natière sèche                  | Э                           | % massiqu            | e Q       | 78.6              | 72.2                         | 85.9           | 75.1           | 71.6           |
| <i>METAUX</i>                  |                             |                      |           |                   |                              |                |                |                |
| rsenic                         |                             | mg/kg MS             | Q         | 12                | 12                           | 8.5            | 10             | 22             |
| admium                         |                             | mg/kg MS             | Q         | <0.2              | <0.2                         | <0.2           | <0.2           | <0.2           |
| hrome                          |                             | mg/kg MS             | Q         | 40                | 39                           | 66             | 24             | 46             |
| uivre                          |                             | mg/kg MS             | Q         | 16                | 17                           | 11             | 14             | 25             |
| nercure                        |                             | mg/kg MS             | Q         | < 0.05            | < 0.05                       | < 0.05         | < 0.05         | < 0.05         |
| lomb                           |                             | mg/kg MS             | Q         | 22                | 25                           | 13             | 17             | 26             |
| ickel                          |                             | mg/kg MS             | Q         | 34                | 33                           | 25             | 21             | 48             |
| nc                             |                             | mg/kg MS             | Q         | 58                | 50                           | 25             | 47             | 110            |
| COMPOSES                       | AROMATIQUES                 | VOLATILS             |           |                   |                              |                |                |                |
| enzène                         |                             | mg/kg MS             | Q         | <0.02             | <0.02                        | < 0.02         | < 0.02         | <0.02          |
| luène                          |                             | mg/kg MS             | Q         | < 0.02            | <0.02                        | <0.02          | <0.02          | <0.02          |
| thylbenzène                    |                             | mg/kg MS             | Q         | < 0.02            | <0.02                        | <0.02          | <0.02          | <0.02          |
| rthoxylène                     |                             | mg/kg MS             | Q         | < 0.02            | 0.06                         | <0.02          | <0.02          | < 0.02         |
| ara- et méta:                  | xylène                      | mg/kg MS             | Q         | <0.02             | 0.20                         | <0.02          | <0.02          | < 0.02         |
| ylènes                         | ,                           | mg/kg MS             | Q         | <0.04             | 0.26                         | <0.04          | <0.04          | <0.04          |
| TEX totaux                     |                             | mg/kg MS             | Q         | <0.10             | 0.26                         | <0.10          | <0.10          | <0.10          |
| HYDROCARI                      | BURES AROMA                 | TIQUES POI           | YCYCI IQI | IES               |                              |                |                |                |
| aphtalène                      |                             | mg/kg MS             | Q         | <0.01             | <0.16 1)                     | <0.01          | <0.01          | <0.01          |
| cénaphtylèn                    | e                           | mg/kg MS             | Q         | <0.01             | <0.16 1)                     | <0.01          | <0.01          | <0.01          |
| cénaphtène                     |                             | mg/kg MS             | Q         | <0.01             | 0.43 2)                      | <0.01          | <0.01          | <0.01          |
| uorène                         |                             | mg/kg MS             | Q         | <0.01             | 0.64 2)                      | <0.01          | <0.01          | <0.01          |
| hénanthrène                    | <u> </u>                    | mg/kg MS             | Q         | <0.01             | 2.0                          | 0.02           | <0.01          | <0.01          |
| nthracène                      | -                           | mg/kg MS             | Q         | <0.01             | 1.8                          | <0.01          | <0.01          | <0.01          |
| uoranthène                     |                             | mg/kg MS             | Q         | <0.01             | <0.16 1)                     | 0.03           | <0.01          | <0.01          |
| yrène                          |                             | mg/kg MS             | Q         | <0.01             | 0.62 2)                      | 0.02           | <0.01          | 0.01           |
| enzo(a)anthi                   | racène                      | mg/kg MS             | Q         | <0.01             | 0.21                         | 0.02           | <0.01          | <0.01          |
| rysène                         |                             | mg/kg MS             | Q         | <0.01             | 0.28 2)                      | 0.01           | <0.01          | <0.01          |
| nysene<br>enzo(b)fluora        | anthène                     | mg/kg MS             | Q         | <0.01             | <0.16 1)                     | <0.01          | <0.01          | <0.01          |
| enzo(b)iluori<br>enzo(k)fluori |                             |                      |           |                   | <0.16<br><0.16 <sup>1)</sup> | <0.01<br><0.01 |                |                |
| ( )                            |                             | mg/kg MS             | Q         | <0.01             |                              |                | <0.01          | <0.01          |
| enzo(a)pyrèi                   |                             | mg/kg MS             | Q         | <0.01             | 0.18<br><0.16 <sup>1)</sup>  | <0.01          | <0.01          | <0.01          |
| ibenzo(ah)ar                   |                             | mg/kg MS             | Q         | <0.01             | <0.16 (0.16 (1)              | <0.01          | <0.01          | <0.01          |
| enzo(ghi)péi                   | -                           | mg/kg MS             | Q         | <0.01             | <0.16                        | <0.01          | <0.01          | <0.01          |
| ndéno(1,2,3-                   | cd)pyréne<br>HAP (16) - EPA | mg/kg MS<br>mg/kg MS | Q<br>Q    | <0.01<br><0.16    | <0.16 <sup>1)</sup> 6.1      | <0.01<br><0.16 | <0.01<br><0.16 | <0.01<br><0.16 |







RAMBOLL FRANCE
Vincent DAMART

Rapport d'analyse

Page 15 sur 44

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5

Référence du projet FRTOTMS020-P2 Réf. du rapport 13323822 - 1 Date de commande 29-09-2020
Date de début 29-09-2020
Rapport du 06-10-2020

| Code | Matrice | Réf. échantillon            |  |
|------|---------|-----------------------------|--|
| 034  | Sol     | GAL3-5_T8S(1.1-1.3)_200917  |  |
| 037  | Sol     | GAL3-5_T9N(0.1-0.4)_200917  |  |
| 038  | Sol     | GAL3-5_T9N(1.7-1.9)_200917  |  |
| 040  | Sol     | GAL3-5_T9S(1.4-1.7)_200917  |  |
| 043  | Sol     | GAL3-5_T10N(1.6-1.8)_200917 |  |

| Analyse                           | Unité    | Q | 034    | 037               | 038   | 040    | 043    |
|-----------------------------------|----------|---|--------|-------------------|-------|--------|--------|
|                                   |          |   |        |                   |       |        |        |
| HYDROCARBURES TOTAU               | X        |   |        |                   |       |        |        |
| Hydrocarbures Volatils C5-<br>C10 | mg/kg MS | Q | <10    | 19                | <10   | <10    | <10    |
| fraction C10-C12                  | mg/kg MS |   | <5     | 100               | <5    | <5     | <5     |
| fraction C12-C16                  | mg/kg MS |   | <10    | 810               | <10   | <10    | <10    |
| fraction C16-C21                  | mg/kg MS |   | <15    | 1500              | <15   | 18     | <15    |
| fraction aromat. >C6-C7           | mg/kg MS | Q | <0.4   | <0.4              | <0.4  | <0.4   | <0.4   |
| fraction aromat. >C7-C8           | mg/kg MS | Q | < 0.05 | < 0.05            | <0.05 | < 0.05 | < 0.05 |
| fraction aromat. >C8-C10          | mg/kg MS | Q | <0.3   | 5.1               | <0.3  | <0.3   | <0.3   |
| fraction aliphat. >C5-C6          | mg/kg MS | Q | <0.5   | <0.5              | <0.5  | <0.5   | <0.5   |
| fraction aliphat. >C6-C8          | mg/kg MS | Q | <0.6   | 3.8               | <0.6  | <0.6   | <0.6   |
| fraction aliphat. >C8-C10         | mg/kg MS | Q | <0.6   | 10                | <0.6  | <0.6   | <0.6   |
| fraction C21-C35                  | mg/kg MS |   | <10    | 2200              | 10    | 40     | <10    |
| fraction C35-C40                  | mg/kg MS |   | <15    | 350 <sup>3)</sup> | <15   | <15    | <15    |
| hydrocarbures totaux C10-<br>C40  | mg/kg MS | Q | <20    | 5000              | <20   | 71     | <20    |







RAMBOLL FRANCE
Vincent DAMART

Page 16 sur 44

Rapport d'analyse

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5

Référence du projet FRTOTMS020-P2
Réf. du rapport 13323822 - 1

Date de commande 29-09-2020
Date de début 29-09-2020
Rapport du 06-10-2020

#### Commentaire

Limite de quantification élevée en raison d'une dilution nécessaire.

2 Résultat fourni à titre indicatif en raison de la présence de composants interférants 3 Présence de composants supérieurs à C40, cela n influence pas le résultat rapporté







RAMBOLL FRANCE

Vincent DAMART

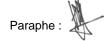
Page 17 sur 44

Rapport d'analyse

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5

Réf. échantillon

Référence du projet FRTOTMS020-P2 Réf. du rapport 13323822 - 1


Matrice

Code

Date de commande 29-09-2020
Date de début 29-09-2020
Rapport du 06-10-2020

| 046 Sol                       |                 | 5_T10S(1.4-1.6)_200917 |       |         |       |       |
|-------------------------------|-----------------|------------------------|-------|---------|-------|-------|
| 048 Sol                       |                 | 5_S10(0-1.2)_200918    |       |         |       |       |
| 049 Sol                       |                 | 5_S11(0.3-0.8)_200918  |       |         |       |       |
| 050 Sol                       |                 | 5_S11(1.3-1.5)_200918  |       |         |       |       |
| 051 Sol                       | GAL3-5          | 5_S12(0.4-1)_200918    |       |         |       |       |
| Analyse                       | Unité Q         | 046                    | 048   | 049     | 050   | 051   |
| prétraitement de l'échantillo | n Q             | Oui                    | Oui   | Oui     | Oui   | Oui   |
| matière sèche                 | % massique Q    | 76.0                   | 79.5  | 76.1    | 81.0  | 84.2  |
| METAUX                        |                 |                        |       |         |       |       |
| arsenic                       | mg/kg MS Q      | 22                     |       |         |       |       |
| cadmium                       | mg/kg MS Q      | <0.2                   |       |         |       |       |
| chrome                        | mg/kg MS Q      | 45                     |       |         |       |       |
| cuivre                        | mg/kg MS Q      | 28                     |       |         |       |       |
| mercure                       | mg/kg MS Q      | <0.05                  |       |         |       |       |
| plomb                         | mg/kg MS Q      | 25                     |       |         |       |       |
| nickel                        | mg/kg MS Q      | 41                     |       |         |       |       |
| zinc                          | mg/kg MS Q      | 90                     |       |         |       |       |
| COMPOSES AROMATIQU            | ES VOLATILS     |                        |       |         |       |       |
| benzène                       | mg/kg MS Q      | < 0.02                 |       |         |       |       |
| toluène                       | mg/kg MS Q      | <0.02                  |       |         |       |       |
| éthylbenzène                  | mg/kg MS Q      | <0.02                  |       |         |       |       |
| orthoxylène                   | mg/kg MS Q      | <0.02                  |       |         |       |       |
| para- et métaxylène           | mg/kg MS Q      | <0.02                  |       |         |       |       |
| xylènes                       | mg/kg MS Q      | < 0.04                 |       |         |       |       |
| BTEX totaux                   | mg/kg MS Q      | <0.10                  |       |         |       |       |
| HYDROCARBURES ARON            | MATIQUES POLYCY | CLIQUES                |       |         |       |       |
| naphtalène                    | mg/kg MS Q      | <0.01                  | 0.34  | <0.01   | <0.01 | 0.01  |
| acénaphtylène                 | mg/kg MS Q      | <0.01                  | 0.01  | <0.01   | <0.01 | <0.01 |
| acénaphtène                   | mg/kg MS Q      | <0.01                  | <0.01 | <0.01   | <0.01 | <0.01 |
| luorène                       | mg/kg MS Q      | <0.01                  | <0.01 | <0.01   | <0.01 | <0.01 |
| ohénanthrène                  | mg/kg MS Q      | <0.01                  | 0.15  | <0.01   | <0.01 | <0.01 |
| anthracène                    | mg/kg MS Q      | 0.02                   | 0.03  | <0.01   | <0.01 | <0.01 |
| fluoranthène                  | mg/kg MS Q      | 0.01                   | 0.23  | 0.02    | <0.01 | 0.05  |
| pyrène                        | mg/kg MS Q      | 0.02                   | 0.21  | 0.02    | <0.01 | 0.05  |
| benzo(a)anthracène            | mg/kg MS Q      | <0.01                  | 0.19  | 0.01 2) | <0.01 | 0.01  |
| chrysène                      | mg/kg MS Q      | <0.01                  | 0.18  | <0.01   | <0.01 | 0.01  |
| benzo(b)fluoranthène          | mg/kg MS Q      | <0.01                  | 0.32  | 0.01    | <0.01 | <0.01 |
| benzo(k)fluoranthène          | mg/kg MS Q      | <0.01                  | 0.16  | <0.01   | <0.01 | <0.01 |
| benzo(a)pyrène                | mg/kg MS Q      | <0.01                  | 0.31  | <0.01   | <0.01 | <0.01 |
| dibenzo(ah)anthracène         | mg/kg MS Q      | <0.01                  | 0.10  | <0.01   | <0.01 | <0.01 |
| benzo(ghi)pérylène            | mg/kg MS Q      | <0.01                  | 0.36  | 0.01    | <0.01 | <0.01 |
| indéno(1,2,3-cd)pyrène        | mg/kg MS Q      | <0.01                  | 0.30  | 0.01    | <0.01 | <0.01 |
| Somme des HAP (16) - EPA      |                 | <0.16                  | 2.9   | <0.16   | <0.16 | 0.18  |

HYDROCARBURES TOTAUX







fraction aromat. >C7-C8

fraction aromat. >C8-C10

fraction aliphat. >C5-C6

fraction aliphat. >C6-C8

fraction aliphat. >C8-C10

hydrocarbures totaux C10-

fraction C21-C35

fraction C35-C40

C40

RAMBOLL FRANCE Page 18 sur 44 Rapport d'analyse Vincent DAMART

<0.05

<0.3

<0.5

<0.6

<0.6

38

<15

68

mg/kg MS Q

mg/kg MS

mg/kg MS

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5

Date de commande 29-09-2020 Référence du projet FRTOTMS020-P2 Date de début 29-09-2020 Réf. du rapport 13323822 - 1 Rapport du 06-10-2020

| Code                            | Matrice            | Réi                        | . échanti | llon              |     |     |     |     |
|---------------------------------|--------------------|----------------------------|-----------|-------------------|-----|-----|-----|-----|
| 046                             | Sol                | GA                         | L3-5_T10  | S(1.4-1.6)_200917 |     |     |     |     |
| 048                             | Sol                | GA                         | L3-5_S10  | (0-1.2)_200918    |     |     |     |     |
| 049                             | Sol                | GAL3-5_S11(0.3-0.8)_200918 |           |                   |     |     |     |     |
| 050                             | Sol                | GA                         | L3-5_S11  | (1.3-1.5)_200918  |     |     |     |     |
| 051                             | Sol                |                            | _         | (0.4-1)_200918    |     |     |     |     |
| Analyse                         |                    | Unité                      | Q         | 046               | 048 | 049 | 050 | 051 |
| Hydrocart<br>C10                | oures Volatils C5- | mg/kg MS                   | Q         | <10               |     |     |     |     |
| fraction C10-C12                |                    | mg/kg MS                   |           | <5                |     |     |     |     |
| fraction C12-C16                |                    | mg/kg MS                   |           | 11                |     |     |     |     |
| fraction C16-C21                |                    | mg/kg MS                   |           | <15               |     |     |     |     |
| fraction aromat. >C6-C7 mg/kg M |                    | mg/kg MS                   | Q         | <0.4              |     |     |     |     |







RAMBOLL FRANCE
Vincent DAMART

Page 19 sur 44

Rapport d'analyse

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5 Date de commande 29-09-2020

 Référence du projet
 FRTOTMS020-P2
 Date de début
 29-09-2020

 Réf. du rapport
 13323822 - 1
 Rapport du
 06-10-2020

Commentaire

2 Résultat fourni à titre indicatif en raison de la présence de composants interférants







Matrice

Code

RAMBOLL FRANCE Page 20 sur 44 Rapport d'analyse Vincent DAMART

FRTOTMS020-P2 Sol\_sept2020\_GAL3-5 Projet

Réf. échantillon

Date de commande 29-09-2020 Référence du projet FRTOTMS020-P2 Date de début 29-09-2020 Réf. du rapport 13323822 - 1 Rapport du 06-10-2020

| 052 Sol                                      | GA                         | L3-5 S12                 | (1-1.3)_200918   |             |             |             |             |  |  |  |  |
|----------------------------------------------|----------------------------|--------------------------|------------------|-------------|-------------|-------------|-------------|--|--|--|--|
| 053 Sol                                      | GAL3-5_S13(0.1-0.5)_200918 |                          |                  |             |             |             |             |  |  |  |  |
| 054 Sol                                      | GAL3-5_S13(0.5-1)_200918   |                          |                  |             |             |             |             |  |  |  |  |
| 056 Sol                                      |                            | GAL3-5_S14(0.3-1)_200918 |                  |             |             |             |             |  |  |  |  |
| 058 Sol                                      |                            |                          | (1.6-2.2)_200918 |             |             |             |             |  |  |  |  |
| Analyse                                      | Unité                      | Q                        | 052              | 053         | 054         | 056         | 058         |  |  |  |  |
|                                              |                            |                          |                  |             |             |             |             |  |  |  |  |
| prétraitement de l'échantillon matière sèche | % massiqu                  | Q<br>e O                 | Oui<br>75.8      | Oui<br>90.7 | Oui<br>78.2 | Oui<br>71.0 | Oui<br>76.4 |  |  |  |  |
| natione scorie                               | 70 massiqu                 | c Q                      | 70.0             | 30.7        | 70.2        | 71.0        | 70.4        |  |  |  |  |
| METAUX                                       |                            |                          |                  |             |             |             |             |  |  |  |  |
| arsenic                                      | mg/kg MS                   | Q                        |                  |             |             | 30          | 23          |  |  |  |  |
| cadmium                                      | mg/kg MS                   | Q                        |                  |             |             | <0.2        | <0.2        |  |  |  |  |
| chrome                                       | mg/kg MS                   | Q                        |                  |             |             | 37          | 30          |  |  |  |  |
| cuivre                                       | mg/kg MS                   | Q                        |                  |             |             | 28          | 15          |  |  |  |  |
| nercure                                      | mg/kg MS                   | Q                        |                  |             |             | <0.05       | < 0.05      |  |  |  |  |
| olomb                                        | mg/kg MS                   | Q                        |                  |             |             | 34          | 18          |  |  |  |  |
| nickel                                       | mg/kg MS                   | Q                        |                  |             |             | 38          | 30          |  |  |  |  |
| zinc                                         | mg/kg MS                   | Q                        |                  |             |             | 60          | 67          |  |  |  |  |
| COMPOSES AROMATIQUES                         | VOLATILS                   |                          |                  |             |             |             |             |  |  |  |  |
| penzène                                      | mg/kg MS                   | Q                        |                  |             |             | <0.02       | < 0.02      |  |  |  |  |
| oluène                                       | mg/kg MS                   | Q                        |                  |             |             | <0.02       | < 0.02      |  |  |  |  |
| éthylbenzène                                 | mg/kg MS                   | Q                        |                  |             |             | <0.02       | < 0.02      |  |  |  |  |
| orthoxylène                                  | mg/kg MS                   | Q                        |                  |             |             | <0.02       | <0.02       |  |  |  |  |
| para- et métaxylène                          | mg/kg MS                   | Q                        |                  |             |             | <0.02       | <0.02       |  |  |  |  |
| kylènes                                      | mg/kg MS                   | Q                        |                  |             |             | <0.04       | <0.04       |  |  |  |  |
| BTEX totaux                                  | mg/kg MS                   | Q                        |                  |             |             | <0.10       | <0.10       |  |  |  |  |
| HYDROCARBURES AROMA                          | TIQUES POL                 | YCYCLIQU                 | IES              |             |             |             |             |  |  |  |  |
| naphtalène                                   | mg/kg MS                   | Q                        | <0.01            | 0.39        | 0.01        | <0.04 1)    | <0.01       |  |  |  |  |
| acénaphtylène                                | mg/kg MS                   | Q                        | <0.01            | <0.06 1)    | <0.01       | 0.06        | <0.01       |  |  |  |  |
| acénaphtène                                  | mg/kg MS                   | Q                        | <0.01            | <0.06 1)    | <0.01       | 0.33 2)     | <0.01       |  |  |  |  |
| luorène                                      | mg/kg MS                   | Q                        | <0.01            | <0.06 1)    | <0.01       | 0.25 2)     | <0.01       |  |  |  |  |
| phénanthrène                                 | mg/kg MS                   | Q                        | <0.01            | 1.5         | 0.02        | 0.65        | <0.01       |  |  |  |  |
| anthracène                                   | mg/kg MS                   | Q                        | <0.01            | 0.41        | <0.01       | 0.22 2)     | <0.01       |  |  |  |  |
| luoranthène                                  | mg/kg MS                   | Q                        | <0.01            | 4.7         | 0.05        | 0.06        | <0.01       |  |  |  |  |
| pyrène                                       | mg/kg MS                   | Q                        | <0.01            | 4.9         | 0.05        | 0.40 2)     | <0.01       |  |  |  |  |
| penzo(a)anthracène                           | mg/kg MS                   | Q                        | <0.01            | 3.7         | 0.05        | <0.04 1)    | <0.01       |  |  |  |  |
| chrysène                                     | mg/kg MS                   | Q                        | <0.01            | 3.0         | 0.04        | 0.08        | <0.01       |  |  |  |  |
| penzo(b)fluoranthène                         | mg/kg MS                   | Q                        | <0.01            | 4.9         | 0.06        | <0.04 1)    | <0.01       |  |  |  |  |
| penzo(k)fluoranthène                         | mg/kg MS                   | Q                        | <0.01            | 2.4         | 0.03        | <0.04       | <0.01       |  |  |  |  |
| penzo(a)pyrène                               | mg/kg MS                   | Q                        | <0.01            | 4.9         | 0.06        | 0.05        | <0.01       |  |  |  |  |
| dibenzo(ah)anthracène                        | mg/kg MS                   | Q                        | <0.01            | 1.1         | 0.01        | <0.04 1)    | <0.01       |  |  |  |  |
| penzo(ghi)pérylène                           | mg/kg MS                   | Q                        | <0.01            | 4.2         | 0.06        | <0.04       | <0.01       |  |  |  |  |
| ndéno(1,2,3-cd)pyrène                        | mg/kg MS                   | Q                        | <0.01            | 4.2         | 0.05        | <0.04       | <0.01       |  |  |  |  |
| Somme des HAP (16) - EPA                     | 0 0                        |                          |                  |             |             |             |             |  |  |  |  |
| Somme des HAP (10) - EPA                     | mg/kg MS                   | Q                        | <0.16            | 40          | 0.50        | 2.1         | <0.16       |  |  |  |  |

HYDROCARBURES TOTAUX







RAMBOLL FRANCE
Vincent DAMART

Page 21 sur 44

Rapport d'analyse

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5 Date de commande 29-09-2020 Référence du projet FRTOTMS020-P2 Date de début 29-09-2020

Réf. du rapport 13323822 - 1

Date de début 29-09-2020 Rapport du 06-10-2020

| Code | Matrice | Réf. échantillon           |
|------|---------|----------------------------|
| 052  | Sol     | GAL3-5_S12(1-1.3)_200918   |
| 053  | Sol     | GAL3-5_S13(0.1-0.5)_200918 |
| 054  | Sol     | GAL3-5_S13(0.5-1)_200918   |
| 056  | Sol     | GAL3-5_S14(0.3-1)_200918   |
| 058  | Sol     | GAL3-5_S15(1.6-2.2)_200918 |

| Analyse                           | Unité    | Q | 052 | 053 | 054 | 056               | 058    |
|-----------------------------------|----------|---|-----|-----|-----|-------------------|--------|
| Hydrocarbures Volatils C5-<br>C10 | mg/kg MS | Q |     |     |     | 48                | <10    |
| fraction C10-C12                  | mg/kg MS |   |     |     |     | 200               | <5     |
| fraction C12-C16                  | mg/kg MS |   |     |     |     | 810               | <10    |
| fraction C16-C21                  | mg/kg MS |   |     |     |     | 890               | <15    |
| fraction aromat. >C6-C7           | mg/kg MS | Q |     |     |     | <0.4              | <0.4   |
| fraction aromat. >C7-C8           | mg/kg MS | Q |     |     |     | < 0.05            | < 0.05 |
| fraction aromat. >C8-C10          | mg/kg MS | Q |     |     |     | 3.5               | <0.3   |
| fraction aliphat. >C5-C6          | mg/kg MS | Q |     |     |     | <0.5              | <0.5   |
| fraction aliphat. >C6-C8          | mg/kg MS | Q |     |     |     | 11                | <0.6   |
| raction aliphat. >C8-C10          | mg/kg MS | Q |     |     |     | 33                | <0.6   |
| fraction C21-C35                  | mg/kg MS |   |     |     |     | 3900              | <10    |
| fraction C35-C40                  | mg/kg MS |   |     |     |     | 880 <sup>3)</sup> | <15    |
| hydrocarbures totaux C10-<br>C40  | mg/kg MS | Q |     |     |     | 6700              | <20    |







RAMBOLL FRANCE
Vincent DAMART

Page 22 sur 44

Rapport d'analyse

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5

Référence du projet FRTOTMS020-P2 Réf. du rapport 13323822 - 1 Date de commande 29-09-2020
Date de début 29-09-2020
Rapport du 06-10-2020

#### Commentaire

1 Limite de quantification élevée en raison d'une dilution nécessaire.

2 Résultat fourni à titre indicatif en raison de la présence de composants interférants 3 Présence de composants supérieurs à C40, cela n influence pas le résultat rapporté







RAMBOLL FRANCE
Vincent DAMART

Page 23 sur 44

Rapport d'analyse

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5

Référence du projet FRTOTMS020-P2 Réf. du rapport 13323822 - 1 Date de commande 29-09-2020

Date de début 29-09-2020

Rapport du 06-10-2020

| Ref. du rappo        | π 13.           | 323822    | 1          |                   | карроп ои | 06-10-2020 |
|----------------------|-----------------|-----------|------------|-------------------|-----------|------------|
| Code I               | Matrice         | Réi       | f. échanti | llon              |           |            |
| 059 S                | iol             | GA        | L3-5_S15   | 6(2.2-2.4)_200918 |           |            |
| Analyse              |                 | Unité     | Q          | 059               |           |            |
| broyage              |                 | _         |            | Oui               |           |            |
|                      |                 |           |            |                   |           |            |
| prétraitement d      | e l'échantillon |           | Q          | Oui               |           |            |
| matière sèche        |                 | % massiqu | e Q        | 86.3              |           |            |
| METAUX               |                 |           |            |                   |           |            |
| arsenic              |                 | mg/kg MS  | Q          | 14                |           |            |
| cadmium              |                 | mg/kg MS  | Q          | <0.2              |           |            |
| chrome               |                 | mg/kg MS  | Q          | 59                |           |            |
| cuivre               |                 | mg/kg MS  | Q          | 9.5               |           |            |
| mercure              |                 | mg/kg MS  | Q          | <0.05             |           |            |
| plomb                |                 | mg/kg MS  | Q          | <0.05<br>13       |           |            |
| nickel               |                 | mg/kg MS  | Q          | 20                |           |            |
| zinc                 |                 | mg/kg MS  | Q          | 23                |           |            |
|                      |                 |           |            |                   |           |            |
| COMPOSES A           | ROMATIQUES      |           |            |                   |           |            |
| benzène              |                 | mg/kg MS  | Q          | <0.02             |           |            |
| toluène              |                 | mg/kg MS  | Q          | <0.02             |           |            |
| éthylbenzène         |                 | mg/kg MS  | Q          | <0.02             |           |            |
| orthoxylène          |                 | mg/kg MS  | Q          | <0.02             |           |            |
| para- et métaxy      | /lène           | mg/kg MS  | Q          | <0.02             |           |            |
| xylènes              |                 | mg/kg MS  | Q          | <0.04             |           |            |
| BTEX totaux          |                 | mg/kg MS  | Q          | <0.10             |           |            |
| HYDROCARBI           | JRES AROMAT     | IQUES POL | YCYCLIQL   | IES               |           |            |
| naphtalène           |                 |           | Q          | <0.01             |           |            |
| acénaphtylène        |                 | mg/kg MS  | Q          | <0.01             |           |            |
| acénaphtène          |                 | mg/kg MS  | Q          | <0.01             |           |            |
| fluorène             |                 | mg/kg MS  | Q          | <0.01             |           |            |
| phénanthrène         |                 | mg/kg MS  | Q          | 0.04              |           |            |
| anthracène           |                 | mg/kg MS  | Q          | 0.02              |           |            |
| fluoranthène         |                 | mg/kg MS  |            | 0.09              |           |            |
| pyrène               |                 | mg/kg MS  |            | 0.07              |           |            |
| benzo(a)anthra       | cène            | mg/kg MS  |            | 0.04              |           |            |
| chrysène             |                 | mg/kg MS  | Q          | 0.04              |           |            |
| benzo(b)fluorar      | nthène          | mg/kg MS  | Q          | 0.03              |           |            |
| benzo(k)fluorar      |                 | mg/kg MS  | Q          | 0.02              |           |            |
| benzo(a)pyrène       |                 | mg/kg MS  |            | 0.03              |           |            |
| dibenzo(ah)ant       |                 | mg/kg MS  | Q          | <0.01             |           |            |
| benzo(ghi)péry       |                 | mg/kg MS  | Q          | 0.02              |           |            |
| indéno(1,2,3-cc      |                 | mg/kg MS  | Q          | 0.02              |           |            |
| Somme des HA         |                 | mg/kg MS  |            | 0.41              |           |            |
| //\\DDCC.155         | (DE0.T0T4)      |           |            |                   |           |            |
|                      | JRES TOTAUX     |           | 0          | 40                |           |            |
| Hydrocarbures<br>C10 | volatils C5-    | mg/kg MS  | Q          | <10               |           |            |







RAMBOLL FRANCE

Vincent DAMART

Page 24 sur 44

Rapport d'analyse

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5

Référence du projet FRTOTMS020-P2 Réf. du rapport 13323822 - 1 Date de commande 29-09-2020

Date de début 29-09-2020

Rapport du 06-10-2020

| Code | Matrice | Réf. échantillon           |
|------|---------|----------------------------|
| 059  | Sol     | GAL3-5_S15(2.2-2.4)_200918 |

| Analyse                          | Unité    | Q | 059    |
|----------------------------------|----------|---|--------|
| fraction C10-C12                 | mg/kg MS |   | <5     |
| fraction C12-C16                 | mg/kg MS |   | <10    |
| fraction C16-C21                 | mg/kg MS |   | <15    |
| fraction aromat. >C6-C7          | mg/kg MS | Q | <0.4   |
| fraction aromat. >C7-C8          | mg/kg MS | Q | < 0.05 |
| fraction aromat. >C8-C10         | mg/kg MS | Q | <0.3   |
| fraction aliphat. >C5-C6         | mg/kg MS | Q | <0.5   |
| fraction aliphat. >C6-C8         | mg/kg MS | Q | <0.6   |
| fraction aliphat. >C8-C10        | mg/kg MS | Q | <0.6   |
| fraction C21-C35                 | mg/kg MS |   | <10    |
| fraction C35-C40                 | mg/kg MS |   | <15    |
| hydrocarbures totaux C10-<br>C40 | mg/kg MS | Q | <20    |







RAMBOLL FRANCE

Vincent DAMART

Page 25 sur 44

Rapport d'analyse

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5

Référence du projet FRTOTMS020-P2 Réf. du rapport 13323822 - 1 Date de commande 29-09-2020
Date de début 29-09-2020
Rapport du 06-10-2020

| Analyse                        | Matrice    | Référence normative                                                                                                                                                                                                                    |
|--------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| prétraitement de l'échantillon | Sol        | Sol: conforme à NF EN 16179). Sol (AS3000): conforme à AS3000 et conforme à NEN-EN 16179                                                                                                                                               |
| matière sèche                  | Sol        | Sol: Equivalent à ISO 11465 et equivalent à NEN-EN 15934. Sol (AS3000): Conforme à AS3010-2 et équivalente à NEN-EN 15934                                                                                                              |
| arsenic                        | Sol        | Conforme à NEN 6950 (digestion conforme à NEN 6961, mesure conforme à NEN-EN-ISO 17294-2); Méthode interne (digestion conforme à NEN 6961 et équivalent à NF EN 16174, mesure conforme à NEN-EN-ISO 17294-2 et conforme à NF EN 16171) |
| cadmium                        | Sol        | Idem                                                                                                                                                                                                                                   |
| chrome                         | Sol        | Idem                                                                                                                                                                                                                                   |
| cuivre                         | Sol        | Idem                                                                                                                                                                                                                                   |
| mercure                        | Sol        | Idem                                                                                                                                                                                                                                   |
| plomb                          | Sol        | Idem                                                                                                                                                                                                                                   |
| nickel                         | Sol        | Idem                                                                                                                                                                                                                                   |
| zinc                           | Sol        | Idem                                                                                                                                                                                                                                   |
| benzène                        | Sol        | conforme à NF EN ISO 22155                                                                                                                                                                                                             |
| toluène                        | Sol        | Idem                                                                                                                                                                                                                                   |
| éthylbenzène                   | Sol        | Idem                                                                                                                                                                                                                                   |
| orthoxylène                    | Sol        | Idem                                                                                                                                                                                                                                   |
| para- et métaxylène            | Sol        | Idem                                                                                                                                                                                                                                   |
| xylènes                        | Sol        | Idem                                                                                                                                                                                                                                   |
| BTEX totaux                    | Sol        | Idem                                                                                                                                                                                                                                   |
| naphtalène                     | Sol        | Conforme à XP CEN/TS 16181 et conforme à NF ISO 18287 (extraction par agitation acétone/hexane, GCMS)                                                                                                                                  |
| acénaphtylène                  | Sol        | Idem                                                                                                                                                                                                                                   |
| acénaphtène                    | Sol        | Idem                                                                                                                                                                                                                                   |
| fluorène                       | Sol        | Idem                                                                                                                                                                                                                                   |
| phénanthrène                   | Sol        | Idem                                                                                                                                                                                                                                   |
| anthracène                     | Sol        | Idem                                                                                                                                                                                                                                   |
| fluoranthène                   | Sol        | Idem                                                                                                                                                                                                                                   |
| pyrène                         | Sol        | Idem                                                                                                                                                                                                                                   |
| benzo(a)anthracène             | Sol        | Idem                                                                                                                                                                                                                                   |
| chrysène                       | Sol        | Idem                                                                                                                                                                                                                                   |
| benzo(b)fluoranthène           | Sol        | Idem                                                                                                                                                                                                                                   |
| benzo(k)fluoranthène           | Sol        | Idem                                                                                                                                                                                                                                   |
| benzo(a)pyrène                 | Sol        | Idem                                                                                                                                                                                                                                   |
| dibenzo(ah)anthracène          | Sol        | Idem                                                                                                                                                                                                                                   |
| benzo(ghi)pérylène             | Sol        | Idem                                                                                                                                                                                                                                   |
| indéno(1,2,3-cd)pyrène         | Sol        | Idem                                                                                                                                                                                                                                   |
| Somme des HAP (16) - EPA       | Sol        | Conforme à NF-ISO 18287 et XP CEN/TS 16181 (extraction par agitation acétone/hexane, GCMS)                                                                                                                                             |
| Hydrocarbures Volatils C5-C10  | Sol        | Conforme à NF-EN-ISO 16558-1                                                                                                                                                                                                           |
| fraction C10-C12               | Sol        | Conforme à NF EN ISO 16703 (Extraction par agitation acétone/<br>hexane, purification avec Florisil)                                                                                                                                   |
| fraction C12-C16               |            |                                                                                                                                                                                                                                        |
|                                | Sol        | ldem                                                                                                                                                                                                                                   |
| fraction C16-C21               | Sol<br>Sol | ldem<br>Idem                                                                                                                                                                                                                           |







RAMBOLL FRANCE
Vincent DAMART

Rapport d'analyse

Page 26 sur 44

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5

Référence du projet FRTOTMS020-P2 Réf. du rapport 13323822 - 1 Date de commande 29-09-2020
Date de début 29-09-2020
Rapport du 06-10-2020

| Analyse                      | Matrice | Référence normative                                                                                  |
|------------------------------|---------|------------------------------------------------------------------------------------------------------|
| fraction aromat. >C7-C8      | Sol     | ldem                                                                                                 |
| fraction aromat. >C8-C10     | Sol     | Idem                                                                                                 |
| fraction aliphat. >C5-C6     | Sol     | ldem                                                                                                 |
| fraction aliphat. >C6-C8     | Sol     | ldem                                                                                                 |
| fraction aliphat. >C8-C10    | Sol     | ldem                                                                                                 |
| fraction C21-C35             | Sol     | Conforme à NF EN ISO 16703 (Extraction par agitation acétone/<br>hexane, purification avec Florisil) |
| fraction C35-C40             | Sol     | ldem                                                                                                 |
| hydrocarbures totaux C10-C40 | Sol     | Idem                                                                                                 |
| broyage                      | Sol     | Méthode interne                                                                                      |

| Code | Code barres | Date de réception | Date prelèvement | Flaconnage |
|------|-------------|-------------------|------------------|------------|
| 001  | V2111144    | 23-09-2020        | 15-09-2020       | ALC210     |
| 001  | V2111160    | 23-09-2020        | 15-09-2020       | ALC210     |
| 002  | V2111148    | 23-09-2020        | 15-09-2020       | ALC210     |
| 002  | V2111153    | 23-09-2020        | 15-09-2020       | ALC210     |
| 003  | V2111146    | 23-09-2020        | 15-09-2020       | ALC210     |
| 003  | V2111150    | 23-09-2020        | 15-09-2020       | ALC210     |
| 004  | V7968042    | 23-09-2020        | 21-09-2020       | ALC201     |
| 005  | V7968051    | 23-09-2020        | 21-09-2020       | ALC201     |
| 006  | V7968045    | 23-09-2020        | 21-09-2020       | ALC201     |
| 006  | V7968048    | 23-09-2020        | 21-09-2020       | ALC201     |
| 007  | V7968043    | 23-09-2020        | 21-09-2020       | ALC201     |
| 007  | V7968044    | 23-09-2020        | 21-09-2020       | ALC201     |
| 800  | V7969332    | 23-09-2020        | 18-09-2020       | ALC201     |
| 009  | V2111197    | 23-09-2020        | 18-09-2020       | ALC210     |
| 010  | V2111191    | 23-09-2020        | 18-09-2020       | ALC210     |
| 010  | V2111202    | 23-09-2020        | 18-09-2020       | ALC210     |
| 011  | V7968060    | 23-09-2020        | 21-09-2020       | ALC201     |
| 012  | V7969323    | 23-09-2020        | 21-09-2020       | ALC201     |
| 012  | V7968056    | 23-09-2020        | 21-09-2020       | ALC201     |
| 013  | V7968041    | 23-09-2020        | 21-09-2020       | ALC201     |
| 014  | V7968054    | 23-09-2020        | 21-09-2020       | ALC201     |
| 015  | V7968057    | 23-09-2020        | 21-09-2020       | ALC201     |
| 015  | V7968053    | 23-09-2020        | 21-09-2020       | ALC201     |
| 016  | V7968055    | 23-09-2020        | 21-09-2020       | ALC201     |
| 017  | V2111280    | 23-09-2020        | 17-09-2020       | ALC210     |
| 018  | V2111283    | 23-09-2020        | 17-09-2020       | ALC210     |
| 018  | V2111181    | 23-09-2020        | 17-09-2020       | ALC210     |
| 019  | V7955320    | 23-09-2020        | 16-09-2020       | ALC201     |
| 019  | V7781491    | 23-09-2020        | 16-09-2020       | ALC201     |
| 020  | V7967870    | 23-09-2020        | 16-09-2020       | ALC201     |
| 020  | V7955321    | 23-09-2020        | 16-09-2020       | ALC201     |
| 021  | V2111135    | 23-09-2020        | 16-09-2020       | ALC210     |
| 021  | V2110756    | 23-09-2020        | 16-09-2020       | ALC210     |







RAMBOLL FRANCE Vincent DAMART

# Rapport d'analyse

Page 27 sur 44

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5

Référence du projet FRTOTMS020-P2 Réf. du rapport 13323822 - 1 Date de commande 29-09-2020

Date de début 29-09-2020

Rapport du 06-10-2020

| Code | Code barres          | Date de réception | Date prelèvement | Flaconnage       |
|------|----------------------|-------------------|------------------|------------------|
| 022  | V2110755             | 23-09-2020        | 16-09-2020       | ALC210           |
| 022  | V2111134             | 23-09-2020        | 16-09-2020       | ALC210           |
| 023  | V2111129             | 23-09-2020        | 16-09-2020       | ALC210           |
| 023  | V2110754             | 23-09-2020        | 16-09-2020       | ALC210           |
| 024  | V2111143             | 23-09-2020        | 16-09-2020       | ALC210           |
| 024  | V2111147             | 23-09-2020        | 16-09-2020       | ALC210           |
| 025  | V2111137             | 23-09-2020        | 16-09-2020       | ALC210           |
| 025  | V2111141             | 23-09-2020        | 16-09-2020       | ALC210           |
| 026  | V2111291             | 23-09-2020        | 17-09-2020       | ALC210           |
| 026  | V2111290             | 23-09-2020        | 17-09-2020       | ALC210           |
| 027  | V2111287             | 23-09-2020        | 17-09-2020       | ALC210           |
| 028  | V2110769             | 23-09-2020        | 16-09-2020       | ALC210           |
| 028  | V2110773             | 23-09-2020        | 16-09-2020       | ALC210           |
| 029  | V2110771             | 23-09-2020        | 16-09-2020       | ALC210           |
| 029  | V2110764             | 23-09-2020        | 16-09-2020       | ALC210           |
| 030  | V2110775             | 23-09-2020        | 16-09-2020       | ALC210           |
| 030  | V2110772             | 23-09-2020        | 16-09-2020       | ALC210           |
| 031  | V2110761             | 23-09-2020        | 16-09-2020       | ALC210           |
| 031  | V2110766             | 23-09-2020        | 16-09-2020       | ALC210           |
| 032  | V2110757             | 23-09-2020        | 16-09-2020       | ALC210           |
| 032  | V2110759             | 23-09-2020        | 16-09-2020       | ALC210           |
| 033  | V2111195             | 23-09-2020        | 17-09-2020       | ALC210           |
| 034  | V2111188             | 23-09-2020        | 17-09-2020       | ALC210           |
| 034  | V7969197             | 23-09-2020        | 17-09-2020       | ALC201           |
| 035  | V2111187             | 23-09-2020        | 17-09-2020       | ALC210           |
| 036  | V211107<br>V2111285  | 23-09-2020        | 17-09-2020       | ALC210           |
| 037  | V2111286             | 23-09-2020        | 17-09-2020       | ALC210           |
| 037  | V2111200<br>V2111277 | 23-09-2020        | 17-09-2020       | ALC210           |
| 038  | V2111277<br>V2111273 | 23-09-2020        | 17-09-2020       | ALC210           |
| 039  | V7969194             | 23-09-2020        | 17-09-2020       | ALC201           |
| 039  | V7969188             | 23-09-2020        | 17-09-2020       | ALC201           |
| 040  | V7969200             | 23-09-2020        | 17-09-2020       | ALC201           |
| 040  | V7969196             | 23-09-2020        | 17-09-2020       | ALC201           |
| 041  | V7969191             | 23-09-2020        | 17-09-2020       | ALC201           |
| 041  | V7969190             | 23-09-2020        | 17-09-2020       | ALC201           |
| 042  | V7969187             | 23-09-2020        | 17-09-2020       | ALC201           |
| 042  | V7969183             | 23-09-2020        | 17-09-2020       | ALC201<br>ALC201 |
| 042  | V7969181             | 23-09-2020        | 17-09-2020       | ALC201<br>ALC201 |
| 043  | V7969544             | 23-09-2020        | 17-09-2020       | ALC201           |
| 043  | V7969186             | 23-09-2020        | 17-09-2020       | ALC201<br>ALC201 |
| 044  | V7969189             | 23-09-2020        | 17-09-2020       | ALC201<br>ALC201 |
| 044  | V7969169<br>V2111180 | 23-09-2020        | 17-09-2020       | ALC201<br>ALC210 |
|      |                      |                   |                  |                  |
| 046  | V2111186             | 23-09-2020        | 17-09-2020       | ALC210           |
| 046  | V2111184             | 23-09-2020        | 17-09-2020       | ALC210           |
| 047  | V2111190             | 23-09-2020        | 17-09-2020       | ALC210           |
| 048  | V2111204             | 23-09-2020        | 18-09-2020       | ALC210           |







RAMBOLL FRANCE Vincent DAMART

# Rapport d'analyse

Page 28 sur 44

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5

Référence du projet FRTOTMS020-P2 Réf. du rapport 13323822 - 1 Date de commande 29-09-2020
Date de début 29-09-2020
Rapport du 06-10-2020

| Code | Code barres | Date de réception | Date prelèvement  | Flaconnage  |
|------|-------------|-------------------|-------------------|-------------|
| Coue |             | Date de reception | Date prefevenient | i laconnage |
| 048  | V2111208    | 23-09-2020        | 18-09-2020        | ALC210      |
| 049  | V2111210    | 23-09-2020        | 18-09-2020        | ALC210      |
| 050  | V2111203    | 23-09-2020        | 18-09-2020        | ALC210      |
| 050  | V2111209    | 23-09-2020        | 18-09-2020        | ALC210      |
| 051  | V2111272    | 23-09-2020        | 18-09-2020        | ALC210      |
| 052  | V2111288    | 23-09-2020        | 18-09-2020        | ALC210      |
| 052  | V2111207    | 23-09-2020        | 18-09-2020        | ALC210      |
| 053  | V2111179    | 23-09-2020        | 18-09-2020        | ALC210      |
| 053  | V2111201    | 23-09-2020        | 18-09-2020        | ALC210      |
| 054  | V2111193    | 23-09-2020        | 18-09-2020        | ALC210      |
| 055  | V7828808    | 23-09-2020        | 16-09-2020        | ALC201      |
| 055  | V7781506    | 23-09-2020        | 16-09-2020        | ALC201      |
| 056  | V7967855    | 23-09-2020        | 16-09-2020        | ALC201      |
| 056  | V7967874    | 23-09-2020        | 16-09-2020        | ALC201      |
| 057  | V2111183    | 23-09-2020        | 17-09-2020        | ALC210      |
| 058  | V2111158    | 23-09-2020        | 17-09-2020        | ALC210      |
| 058  | V2111182    | 23-09-2020        | 17-09-2020        | ALC210      |
| 059  | V2111185    | 23-09-2020        | 17-09-2020        | ALC210      |

# Echantillons en attente

| Code | Matrice | Réf. échantillon            |  |
|------|---------|-----------------------------|--|
| 005  | Sol     | GAL3-5_T1S(0.4-0.6)_200921  |  |
| 009  | Sol     | GAL3-5_T2O(0.7-1)_200918    |  |
| 011  | Sol     | GAL3-5_T3N(0.4-0.6)_200921  |  |
| 014  | Sol     | GAL3-5_T4E(0.3-0.5)_200921  |  |
| 017  | Sol     | GAL3-5_T5N(0.3-0.7)_200917  |  |
| 019  | Sol     | GAL3-5_T5S(0.4-0.6)_200916  |  |
| 021  | Sol     | GAL3-5_T6N(0.4-1)_200916    |  |
| 023  | Sol     | GAL3-5_T6N(1.7-2)_200916    |  |
| 024  | Sol     | GAL3-5_T6S(0.3-1)_200916    |  |
| 028  | Sol     | GAL3-5_T7S(0.3-0.6)_200916  |  |
| 030  | Sol     | GAL3-5_T7S(1.4-1.6)_200916  |  |
| 031  | Sol     | GAL3-5_T8N(0.3-0.7)_200916  |  |
| 033  | Sol     | GAL3-5_T8S(0.2-0.7)_200917  |  |
| 035  | Sol     | GAL3-5_T8S(1.3-1.5)_200917  |  |
| 036  | Sol     | GAL3-5_T9N(0-0.1)_200917    |  |
| 039  | Sol     | GAL3-5_T9S(0.3-0.6)_200917  |  |
| 041  | Sol     | GAL3-5_T9S(1.7-2)_200917    |  |
| 042  | Sol     | GAL3-5_T10N(0.3-1)_200917   |  |
| 044  | Sol     | GAL3-5_T10N(1.8-2)_200917   |  |
| 045  | Sol     | GAL3-5_T10S(0.4-1.1)_200917 |  |
| 047  | Sol     | GAL3-5_T10S(2-2.3)_200917   |  |







RAMBOLL FRANCE Page 29 sur 44
Vincent DAMART Rapport d'analyse

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5 Date de commande 29-09-2020

Référence du projetFRTOTMS020-P2Date de début29-09-2020Réf. du rapport13323822 - 1Rapport du06-10-2020

#### Echantillons en attente

| Code | Matrice | Réf. échantillon           |
|------|---------|----------------------------|
| 055  | Sol     | GAL3-5_S14(0-0.3)_200918   |
| 057  | Sol     | GAL3-5_S15(0.8-1.1)_200918 |

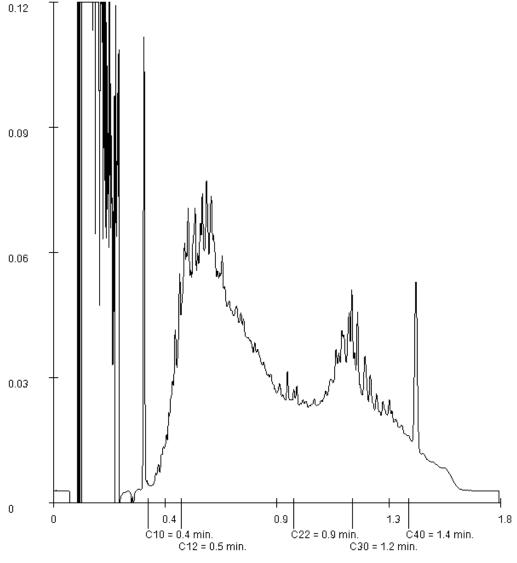






RAMBOLL FRANCE Page 30 sur 44 Rapport d'analyse Vincent DAMART

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5


Date de commande 29-09-2020 Référence du projet FRTOTMS020-P2 Date de début 29-09-2020 Réf. du rapport Rapport du 06-10-2020 13323822 - 1

Référence de l'échantillon:

GAL3-5\_MW1(0.9-1.5)\_200915 Information relative aux échantillons

# Détermination de la chaîne de carbone

C9-C14 essence kérosène et pétrole C10-C16 diesel et gazole C10-C28 huile de moteur C20-C36 mazout C10-C36



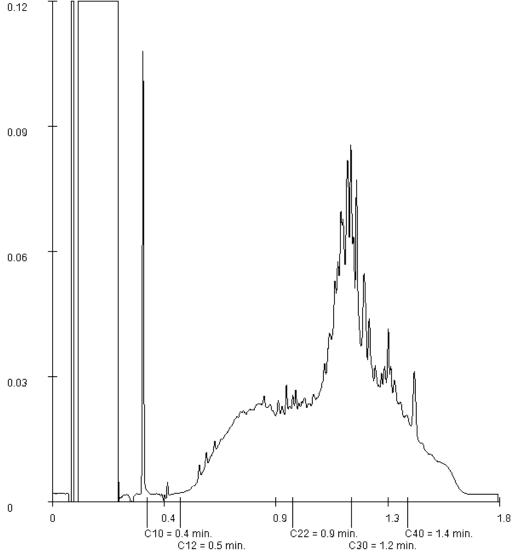






RAMBOLL FRANCE Page 31 sur 44 Rapport d'analyse Vincent DAMART

Projet


FRTOTMS020-P2 Sol\_sept2020\_GAL3-5 Date de commande 29-09-2020 Référence du projet FRTOTMS020-P2 Date de début 29-09-2020 Réf. du rapport Rapport du 06-10-2020 13323822 - 1

Référence de l'échantillon: 002

GAL3-5\_MW1(0.4-0.9)\_200915 Information relative aux échantillons

#### Détermination de la chaîne de carbone

C9-C14 essence kérosène et pétrole C10-C16 diesel et gazole C10-C28 huile de moteur C20-C36 mazout C10-C36









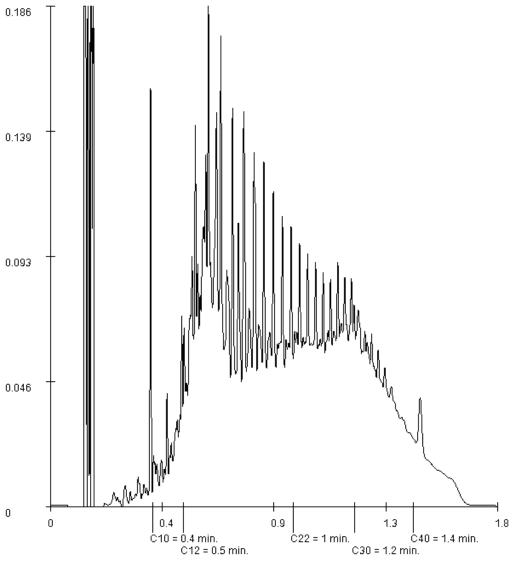
RAMBOLL FRANCE
Vincent DAMART

Page 32 sur 44

Rapport d'analyse

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5

Référence du projet FRTOTMS020-P2 Réf. du rapport 13323822 - 1


Référence de l'échantillon: 006

Information relative aux échantillons GAL3-5\_T1S(0.6-0.9)\_200921

# Détermination de la chaîne de carbone

| C9-C14  |
|---------|
| C10-C16 |
| C10-C28 |
| C20-C36 |
| C10-C36 |
|         |

Les pics C10 et C40 sont introduits par le laboratoire et sont utilisés comme étalons internes.





Date de commande 29-09-2020

29-09-2020

06-10-2020

Date de début

Rapport du

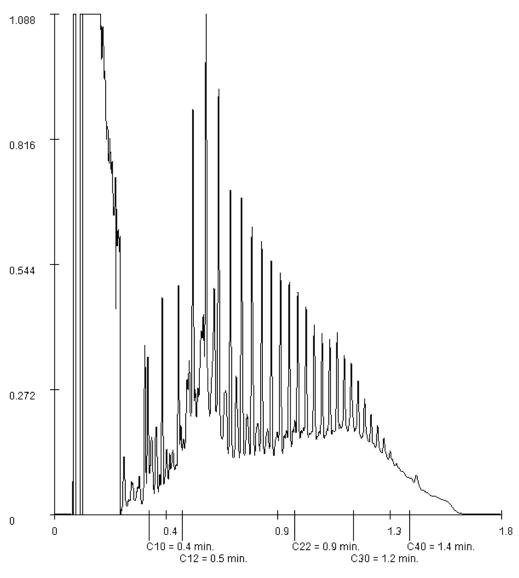




RAMBOLL FRANCE Page 33 sur 44 Rapport d'analyse Vincent DAMART

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5

Référence du projet FRTOTMS020-P2 Réf. du rapport 13323822 - 1


007 Référence de l'échantillon:

Information relative aux échantillons GAL3-5\_T1S(0.9-1.2)\_200921

# Détermination de la chaîne de carbone

| essence             | C9-C14  |
|---------------------|---------|
| kérosène et pétrole | C10-C16 |
| diesel et gazole    | C10-C28 |
| huile de moteur     | C20-C36 |
| mazout              | C10-C36 |
|                     |         |

Les pics C10 et C40 sont introduits par le laboratoire et sont utilisés comme étalons internes.





Date de commande 29-09-2020

29-09-2020

06-10-2020

Date de début

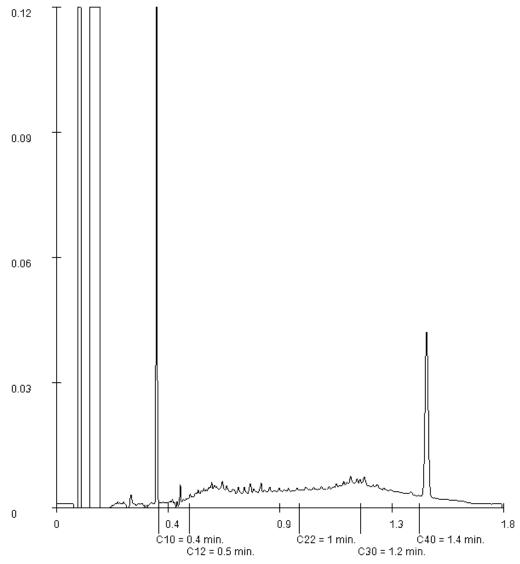
Rapport du





RAMBOLL FRANCE Page 34 sur 44 Rapport d'analyse Vincent DAMART

Projet


FRTOTMS020-P2 Sol\_sept2020\_GAL3-5 Date de commande 29-09-2020 Référence du projet FRTOTMS020-P2 Date de début 29-09-2020 Réf. du rapport Rapport du 06-10-2020 13323822 - 1

Référence de l'échantillon: 010

Information relative aux échantillons GAL3-5\_T2O(1-1.5)\_200918

# Détermination de la chaîne de carbone

C9-C14 essence kérosène et pétrole C10-C16 diesel et gazole C10-C28 C20-C36 huile de moteur mazout C10-C36





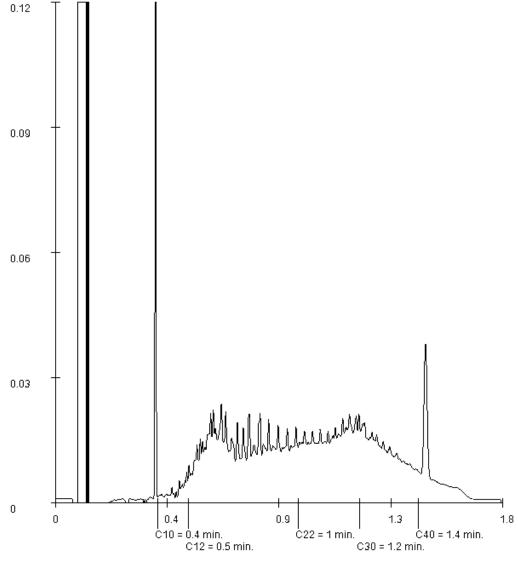




RAMBOLL FRANCE Page 35 sur 44

Vincent DAMART Rapport d'analyse

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5 Date de commande 29-09-2020


Référence du projet FRTOTMS020-P2 Réf. du rapport 13323822 - 1 Date de début 29-09-2020 Rapport du 06-10-2020

Référence de l'échantillon: 012

Information relative aux échantillons GAL3-5\_T3N(0.8-1.1)\_200921

#### Détermination de la chaîne de carbone

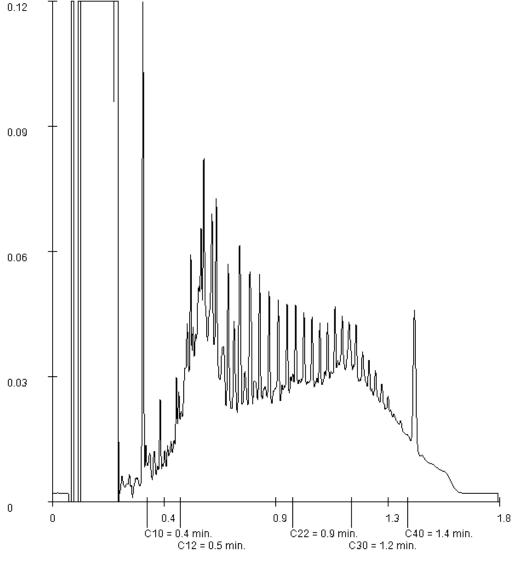
essence C9-C14
kérosène et pétrole C10-C16
diesel et gazole C10-C28
huile de moteur C20-C36
mazout C10-C36










RAMBOLL FRANCE Page 36 sur 44
Vincent DAMART Rapport d'analyse

Référence de l'échantillon: 015

Information relative aux échantillons GAL3-5\_T4E(1-1.2)\_200921

#### Détermination de la chaîne de carbone

essence C9-C14
kérosène et pétrole C10-C16
diesel et gazole C10-C28
huile de moteur C20-C36
mazout C10-C36







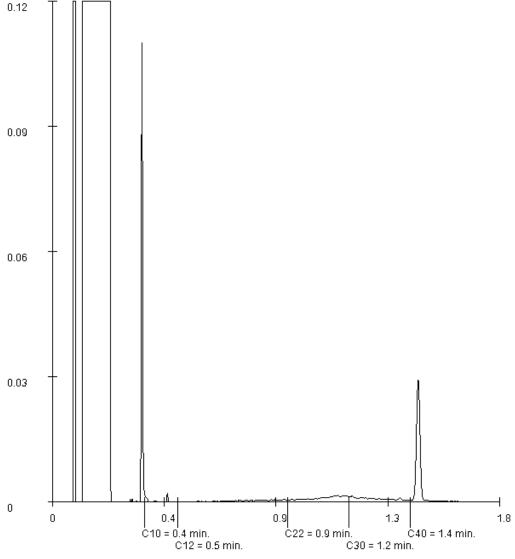


RAMBOLL FRANCE Page 37 sur 44
Vincent DAMART Rapport d'analyse

 Projet
 FRTOTMS020-P2 Sol\_sept2020\_GAL3-5
 Date de commande 29-09-2020

 Référence du projet
 FRTOTMS020-P2
 Date de début 29-09-2020

 Réf. du rapport
 13323822 - 1
 Rapport du 06-10-2020


Référence de l'échantillon: 025

Information relative aux échantillons GAL3-5\_T6S(1-1.3)\_200916

#### Détermination de la chaîne de carbone

essence C9-C14
kérosène et pétrole C10-C16
diesel et gazole C10-C28
huile de moteur C20-C36
mazout C10-C36

Les pics C10 et C40 sont introduits par le laboratoire et sont utilisés comme étalons internes.







SYNLAB Analytics & Services B.V. est accrédité sous le n° L028 par le RvA (Raad voor Accreditatie), conformément aux critères des laboratoires d'analyse EN ISO/IEC 17025:2017. Toutes nos prestations so réalisées selon nos Conditions



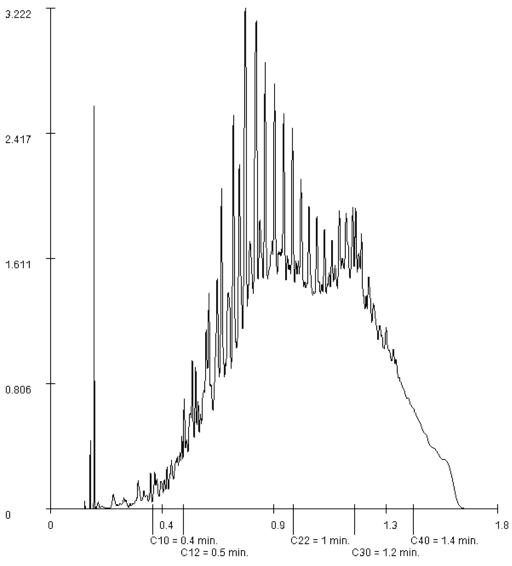
RAMBOLL FRANCE
Vincent DAMART

Page 38 sur 44

Rapport d'analyse

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5

Référence du projet FRTOTMS020-P2 Réf. du rapport 13323822 - 1


Référence de l'échantillon: 026

Information relative aux échantillons GAL3-5\_T7N(0-0.5)\_200917

# Détermination de la chaîne de carbone

| essence             | C9-C14  |
|---------------------|---------|
| kérosène et pétrole | C10-C16 |
| diesel et gazole    | C10-C28 |
| huile de moteur     | C20-C36 |
| mazout              | C10-C36 |
|                     |         |

Les pics C10 et C40 sont introduits par le laboratoire et sont utilisés comme étalons internes.





Date de commande 29-09-2020

29-09-2020

06-10-2020

Date de début

Rapport du





RAMBOLL FRANCE

Vincent DAMART

Page 39 sur 44

Rapport d'analyse

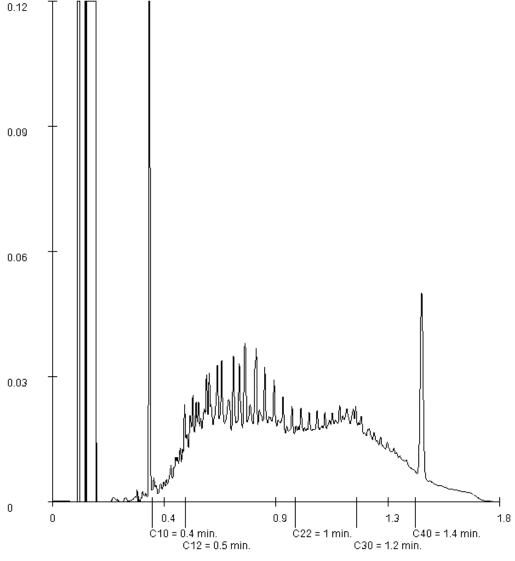
GAL3-5\_T7N(1.6-1.8)\_200917

-Tr

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5 Date de commande 29-09-2020 Référence du projet FRTOTMS020-P2 Date de début 29-09-2020

Rapport du

06-10-2020


Référence du projet FRTOTMS020-P2
Réf. du rapport 13323822 - 1

Référence de l'échantillon: 027

Information relative aux échantillons

Détermination de la chaîne de carbone

# essence C9-C14 kérosène et pétrole C10-C16 diesel et gazole C10-C28 huile de moteur C20-C36 mazout C10-C36





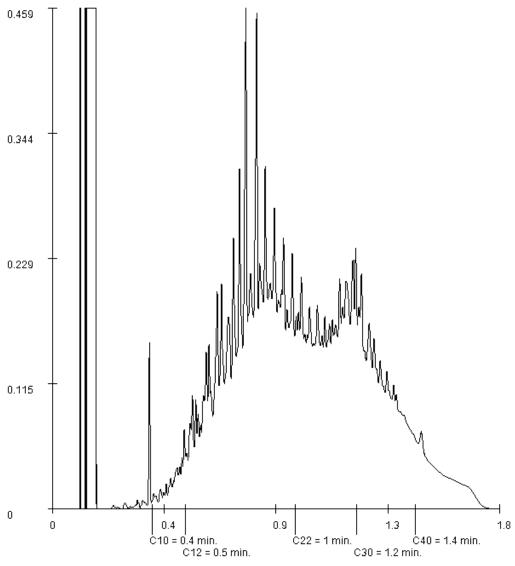




RAMBOLL FRANCE Page 40 sur 44 Rapport d'analyse Vincent DAMART

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5

Référence du projet FRTOTMS020-P2 Réf. du rapport 13323822 - 1


037 Référence de l'échantillon:

Information relative aux échantillons GAL3-5\_T9N(0.1-0.4)\_200917

# Détermination de la chaîne de carbone

| essence             | C9-C14  |
|---------------------|---------|
| kérosène et pétrole | C10-C16 |
| diesel et gazole    | C10-C28 |
| huile de moteur     | C20-C36 |
| mazout              | C10-C36 |
|                     |         |

Les pics C10 et C40 sont introduits par le laboratoire et sont utilisés comme étalons internes.





Date de commande 29-09-2020

29-09-2020

06-10-2020

Date de début

Rapport du



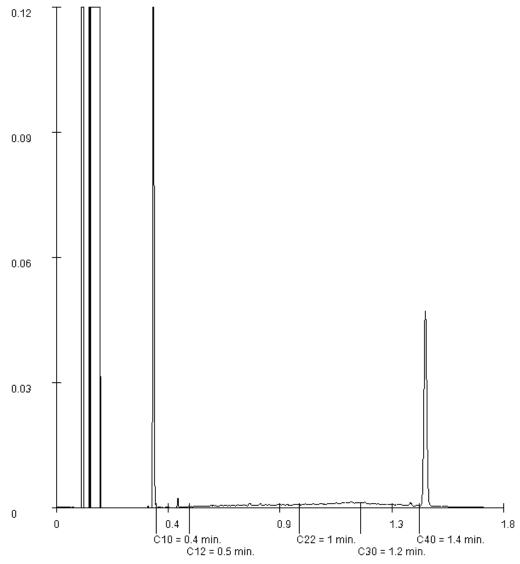


RAMBOLL FRANCE Page 41 sur 44

Vincent DAMART Rapport d'analyse

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5 Date de commande 29-09-2020

Référence du projetFRTOTMS020-P2Date de débutRéf. du rapport13323822 - 1Rapport du


Référence de l'échantillon: 038

Information relative aux échantillons GAL3-5\_T9N(1.7-1.9)\_200917

#### Détermination de la chaîne de carbone

essence C9-C14
kérosène et pétrole C10-C16
diesel et gazole C10-C28
huile de moteur C20-C36
mazout C10-C36

Les pics C10 et C40 sont introduits par le laboratoire et sont utilisés comme étalons internes.





29-09-2020

06-10-2020





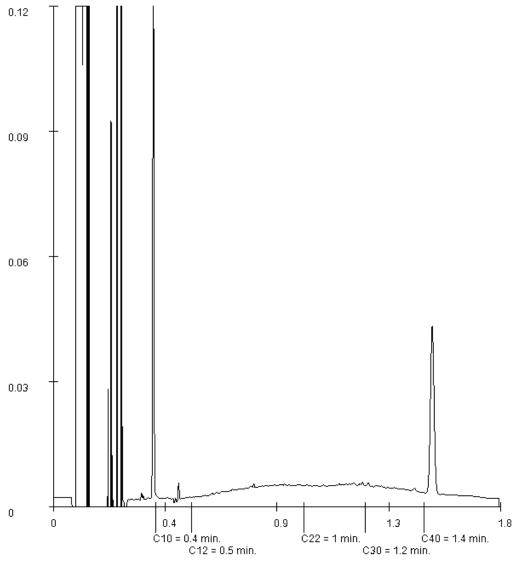
RAMBOLL FRANCE Page 42 sur 44

# Vincent DAMART Rapport d'analyse

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5 Date de commande 29-09-2020 Référence du projet FRTOTMS020-P2 Date de début 29-09-2020

Rapport du

06-10-2020


Référence du projet FRTOTMS020-P2 Réf. du rapport 13323822 - 1

Référence de l'échantillon: 040

Information relative aux échantillons GAL3-5\_T9S(1.4-1.7)\_200917

#### Détermination de la chaîne de carbone

essence C9-C14
kérosène et pétrole C10-C16
diesel et gazole C10-C28
huile de moteur C20-C36
mazout C10-C36

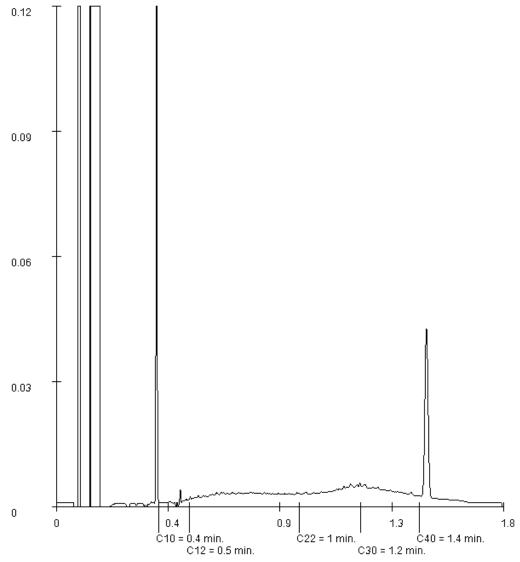








RAMBOLL FRANCE Page 43 sur 44 Rapport d'analyse Vincent DAMART


Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5 Date de commande 29-09-2020 Référence du projet FRTOTMS020-P2 Date de début 29-09-2020 Réf. du rapport Rapport du 06-10-2020 13323822 - 1

Référence de l'échantillon:

Information relative aux échantillons GAL3-5\_T10S(1.4-1.6)\_200917

#### Détermination de la chaîne de carbone

C9-C14 essence kérosène et pétrole C10-C16 diesel et gazole C10-C28 C20-C36 huile de moteur mazout C10-C36





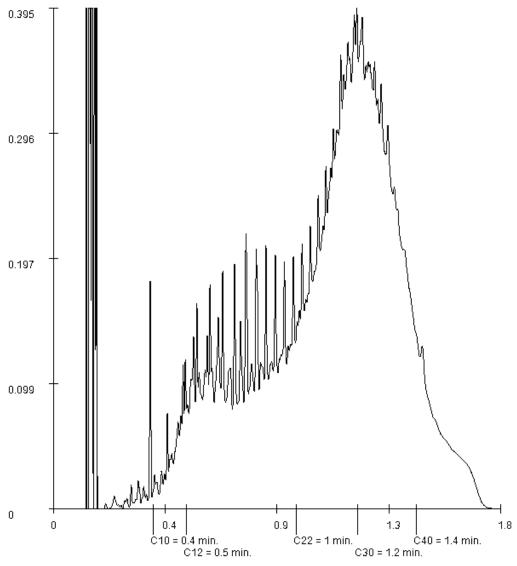




RAMBOLL FRANCE Page 44 sur 44 Rapport d'analyse Vincent DAMART

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5

Référence du projet FRTOTMS020-P2 Réf. du rapport 13323822 - 1


Référence de l'échantillon: 056

Information relative aux échantillons GAL3-5\_S14(0.3-1)\_200918

# Détermination de la chaîne de carbone

| essence             | C9-C14  |
|---------------------|---------|
| kérosène et pétrole | C10-C16 |
| diesel et gazole    | C10-C28 |
| huile de moteur     | C20-C36 |
| mazout              | C10-C36 |
|                     |         |

Les pics C10 et C40 sont introduits par le laboratoire et sont utilisés comme étalons internes.





Date de commande 29-09-2020

29-09-2020

06-10-2020

Date de début

Rapport du





# Rapport d'analyse

SYNLAB Analytics & Services B.V.

Adresse de correspondance 99-101 avenue Louis Roche · F-92230 Gennevilliers Tel.: +33 (0)155 90 52 50 · Fax: +33 (0)155 90 52 51 www.synlab.fr

Page 1 sur 8

RAMBOLL FRANCE Vincent DAMART Immeuble Le Cézanne 155 rue de Broglie F-13100 AIX-EN-PROVENCE

Votre nom de Projet : FRTOTMS020-P2 Sol\_sept2020\_GAL3-5\_analyses\_sup

Votre référence de Projet : FRTOTMS020-P2 Référence du rapport SYNLAB : 13337072, version: 1.

Rotterdam, 30-10-2020

Cher(e) Madame/ Monsieur,


Ce rapport contient les résultats des analyses effectuées pour votre projet FRTOTMS020-P2. Les analyses ont été réalisées en accord avec votre commande. Les résultats rapportés se réfèrent aux échantillons tels qu'ils ont été reçus à SYNLAB. Le rapport reprend les descriptions des échantillons, la date de prélèvement (si fournie), le nom de projet et les analyses que vous avez indiqués sur le bon de commande. SYNLAB n'est pas responsable des données fournies par le client.

Ce rapport est constitué de 8 pages dont chromatogrammes si prévus, références normatives, informations sur les échantillons. Dans le cas d'une version 2 ou plus élevée, toute version antérieure n'est pas valable. Toutes les pages font partie intégrante de ce rapport, et seule une reproduction de l'ensemble du rapport est autorisée.

En cas de questions et/ou remarques concernant ce rapport, nous vous prions de contacter notre Service Client.

Toutes les analyses sont réalisées par SYNLAB Analytics & Services B.V., Steenhouwerstraat 15, Rotterdam, Pays Bas. Les analyses sous-traitées ou celles réalisées par les laboratoires SYNLAB en France (99-101 Avenue Louis Roche, Gennevilliers, France) sont indiquées sur le rapport.

Veuillez recevoir, Madame/ Monsieur, l'expression de nos cordiales salutations.







RAMBOLL FRANCE

Vincent DAMART

# Rapport d'analyse

Page 2 sur 8

FRTOTMS020-P2 Sol\_sept2020\_GAL3-5\_analyses\_sup Projet

Référence du projet FRTOTMS020-P2 Date de début

Réf. du rapport 13337072 - 1

21-10-2020 30-10-2020 Rapport du

Date de commande 20-10-2020

| Code                    | Matrice               | Ré                         | f. échanti | llon              |            |      |      |      |
|-------------------------|-----------------------|----------------------------|------------|-------------------|------------|------|------|------|
| 001                     | Sol                   | GAL3-5_T1S(0.4-0.6)_200921 |            |                   |            |      |      |      |
| 002                     | Sol                   | GA                         | L3-5_T15   | 8(0.9-1.2)_200921 |            |      |      |      |
| 003                     | Sol                   | GA                         | L3-5_T4E   | (0.3-0.5)_200921  |            |      |      |      |
| 004                     | Sol                   | GA                         | L3-5_T9N   | N(0-0.1)_200917   |            |      |      |      |
| 005                     | Sol                   | GA                         | L3-5_S14   | 1(0-0.3)_200918   |            |      |      |      |
| Analyse                 |                       | Unité                      | Q          | 001               | 002        | 003  | 004  | 005  |
| prátraitom              | nent de l'échantillon |                            | Q          | Oui               | Oui        | Oui  | Oui  | Oui  |
| matière se              |                       | % massiqu                  |            | 73.3              | 56.8       | 83.0 | 78.0 | 79.7 |
| HYDROC                  | CARBURES TOTAUX       | <b>(</b>                   |            |                   |            |      |      |      |
| fraction C              | 10-C12                | mg/kg MS                   |            | <5                |            | <5   | <5   | <5   |
| fraction C              | 12-C16                | mg/kg MS                   |            | <10               |            | <10  | <10  | <10  |
| fraction C              | 16-C21                | mg/kg MS                   |            | 22                |            | 25   | 21   | 60   |
| fraction C              | 21-C35                | mg/kg MS                   |            | 170               |            | 100  | 170  | 380  |
| fraction C              | 35-C40                | mg/kg MS                   |            | 31                |            | <15  | 21   | 54   |
| hydrocarb<br>C40        | oures totaux C10-     | mg/kg MS                   | Q          | 230               |            | 140  | 210  | 500  |
| LIXIVIATI               | ION                   |                            |            |                   |            |      |      |      |
| Lixiviation<br>EN-12457 | 1 24h - NF-<br>7-2    |                            | Q          |                   | #          |      |      |      |
| date de la              | incement              |                            |            |                   | 26-10-2020 |      |      |      |
| L/S                     |                       | ml/g                       | Q          |                   | 10.00      |      |      |      |
| pH final a              | •                     | -                          | Q          |                   | 11.88      |      |      |      |
|                         | re pour mes. pH       | °C                         |            |                   | 20.2       |      |      |      |
| conductiv               | ité (25°C) ap. lix.   | μS/cm                      | Q          |                   | 1660       |      |      |      |
| ELUAT M                 | 1ETAUX                |                            |            |                   | 1) 2)      |      |      |      |
| cuivre                  |                       | mg/kg MS                   | Q          |                   | # 1) 2)    |      |      |      |
| plomb                   |                       | mg/kg MS                   | Q          |                   | # 1) 2)    |      |      |      |

Les analyses notées Q sont accréditées par le RvA.







RAMBOLL FRANCE
Vincent DAMART

Page 3 sur 8

Rapport d'analyse

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5\_analyses\_sup Date de commande 20-10-2020

Référence du projet FRTOTMS020-P2 Date de début 21-10-2020 Réf. du rapport 13337072 - 1 Rapport du 30-10-2020

### Commentaire

1 Voorbewerking fout

2 Analysés par ICP-MS, conforme NEN-EN-ISO 17294-2, au lieu d ICP-AES







RAMBOLL FRANCE
Vincent DAMART

Rapport d'analyse

Page 4 sur 8

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5\_analyses\_sup

Référence du projet FRTOTMS020-P2 Réf. du rapport 13337072 - 1 Date de commande 20-10-2020 Date de début 21-10-2020 Rapport du 30-10-2020

| Analyse                         | Matrice   | Référence normative                                                                                                       |  |  |
|---------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------|--|--|
| prétraitement de l'échantillon  | Sol       | Sol: conforme à NF EN 16179). Sol (AS3000): conforme à AS3000 et conforme à NEN-EN 16179                                  |  |  |
| matière sèche                   | Sol       | Sol: Equivalent à ISO 11465 et equivalent à NEN-EN 15934. Sol (AS3000): Conforme à AS3010-2 et équivalente à NEN-EN 15934 |  |  |
| fraction C10-C12                | Sol       | Conforme à NF EN ISO 16703 (Extraction par agitation acétone/<br>hexane, purification avec Florisil)                      |  |  |
| fraction C12-C16                | Sol       | Idem                                                                                                                      |  |  |
| fraction C16-C21                | Sol       | Idem                                                                                                                      |  |  |
| fraction C21-C35                | Sol       | Idem                                                                                                                      |  |  |
| fraction C35-C40                | Sol       | Idem                                                                                                                      |  |  |
| hydrocarbures totaux C10-C40    | Sol       | Idem                                                                                                                      |  |  |
| Lixiviation 24h - NF-EN-12457-2 | Sol Eluat | Conforme à NF-EN 12457-2                                                                                                  |  |  |
| pH final ap. lix.               | Sol Eluat | Conforme à NEN-EN-ISO 10523                                                                                               |  |  |
| conductivité (25°C) ap. lix.    | Sol Eluat | Conforme à NEN-ISO 7888 et conforme à EN 27888                                                                            |  |  |
| cuivre                          | Sol Eluat | Conforme à NEN 6966 et conforme à NEN-EN-ISO 11885                                                                        |  |  |
| plomb                           | Sol Eluat | ldem                                                                                                                      |  |  |

| Code | Code barres | Date de réception | Date prelèvement | Flaconnage |
|------|-------------|-------------------|------------------|------------|
| 001  | V7968051    | 23-09-2020        | 21-09-2020       | ALC201     |
| 002  | V7968044    | 23-09-2020        | 21-09-2020       | ALC201     |
| 002  | V7968043    | 23-09-2020        | 21-09-2020       | ALC201     |
| 003  | V7968054    | 23-09-2020        | 21-09-2020       | ALC201     |
| 004  | V2111285    | 23-09-2020        | 17-09-2020       | ALC210     |
| 005  | V7828808    | 23-09-2020        | 16-09-2020       | ALC201     |
| 005  | V7781506    | 23-09-2020        | 16-09-2020       | ALC201     |



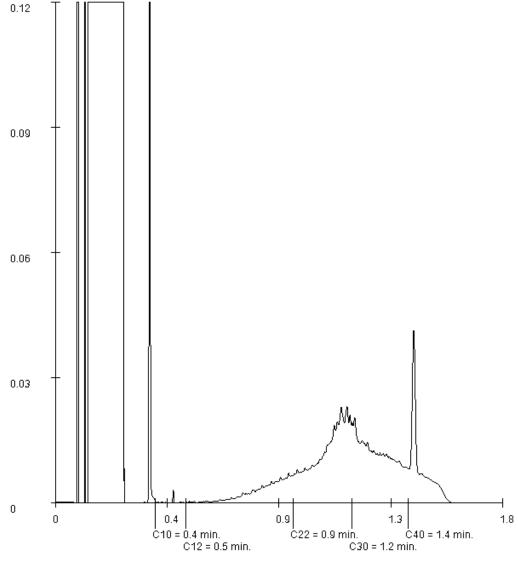




RAMBOLL FRANCE Page 5 sur 8 Rapport d'analyse Vincent DAMART

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5\_analyses\_sup

Date de commande 20-10-2020 Référence du projet FRTOTMS020-P2 Date de début 21-10-2020 Réf. du rapport Rapport du 30-10-2020 13337072 - 1


Référence de l'échantillon:

Information relative aux échantillons GAL3-5\_T1S(0.4-0.6)\_200921

### Détermination de la chaîne de carbone

C9-C14 essence kérosène et pétrole C10-C16 diesel et gazole C10-C28 C20-C36 huile de moteur mazout C10-C36

Les pics C10 et C40 sont introduits par le laboratoire et sont utilisés comme étalons internes.









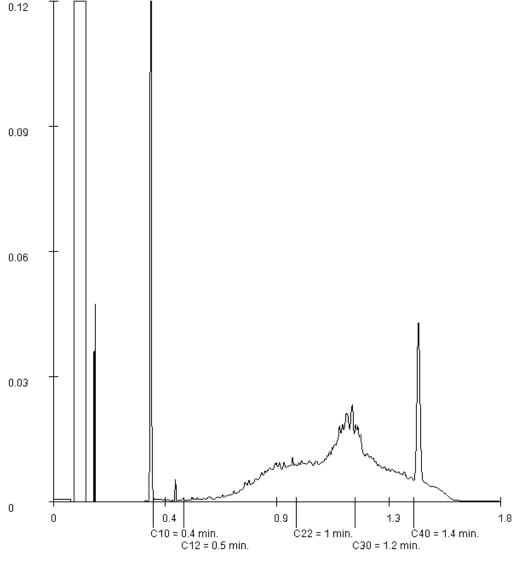
RAMBOLL FRANCE
Vincent DAMART

Page 6 sur 8

Rapport d'analyse

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5\_analyses\_sup

Référence du projet FRTOTMS020-P2 Réf. du rapport 13337072 - 1 Date de commande 20-10-2020
Date de début 21-10-2020
Rapport du 30-10-2020


Référence de l'échantillon: 003

Information relative aux échantillons GAL3-5\_T4E(0.3-0.5)\_200921

### Détermination de la chaîne de carbone

essence C9-C14
kérosène et pétrole C10-C16
diesel et gazole C10-C28
huile de moteur C20-C36
mazout C10-C36

Les pics C10 et C40 sont introduits par le laboratoire et sont utilisés comme étalons internes.









RAMBOLL FRANCE

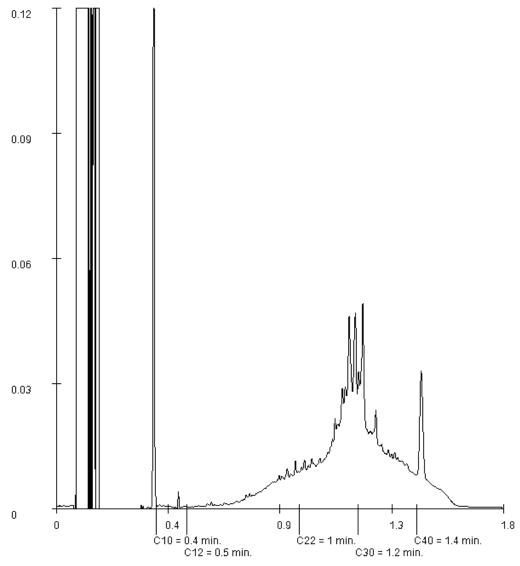
Vincent DAMART

Page 7 sur 8

Rapport d'analyse

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5\_analyses\_sup

Référence du projet FRTOTMS020-P2 Réf. du rapport 13337072 - 1 Date de commande 20-10-2020
Date de début 21-10-2020
Rapport du 30-10-2020


Référence de l'échantillon: 004

Information relative aux échantillons GAL3-5\_T9N(0-0.1)\_200917

### Détermination de la chaîne de carbone

| essence             | C9-C14  |
|---------------------|---------|
| kérosène et pétrole | C10-C16 |
| diesel et gazole    | C10-C28 |
| huile de moteur     | C20-C36 |
| mazout              | C10-C36 |

Les pics C10 et C40 sont introduits par le laboratoire et sont utilisés comme étalons internes.







SYNLAB Analytics & Services B.V. est accrédité sous le n° L028 par le RvA (Raad voor Accreditatie), conformément aux critères des laboratoires d'analyse EN ISO/IEC 17025:2017. Toutes nos prestations so étalisées selon nos Conditions



RAMBOLL FRANCE

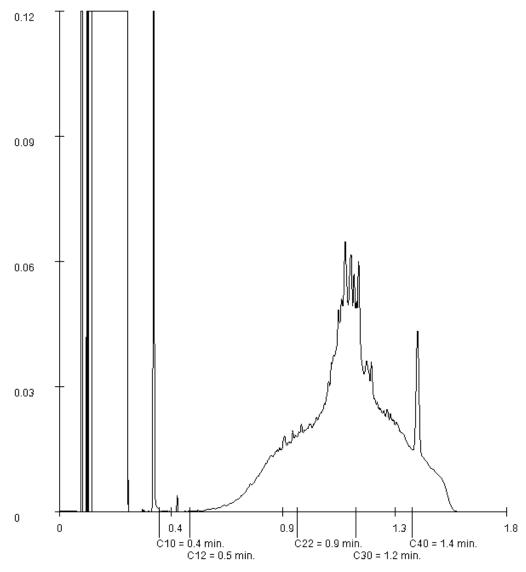
Vincent DAMART

Page 8 sur 8

Rapport d'analyse

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5\_analyses\_sup

Référence du projet FRTOTMS020-P2 Réf. du rapport 13337072 - 1


Référence de l'échantillon: 005

Information relative aux échantillons GAL3-5\_S14(0-0.3)\_200918

### Détermination de la chaîne de carbone

essence C9-C14
kérosène et pétrole C10-C16
diesel et gazole C10-C28
huile de moteur C20-C36
mazout C10-C36

Les pics C10 et C40 sont introduits par le laboratoire et sont utilisés comme étalons internes.





Date de commande 20-10-2020

21-10-2020

30-10-2020

Date de début

Rapport du





### Rapport d'analyse

#### SYNLAB Analytics & Services B.V.

Adresse de correspondance 99-101 avenue Louis Roche · F-92230 Gennevilliers Tel.: +33 (0)155 90 52 50 · Fax: +33 (0)155 90 52 51 www.synlab.fr

Page 1 sur 8

Vincent DAMART Immeuble Le Cézanne 155 rue de Broglie F-13100 AIX-EN-PROVENCE

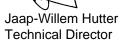
RAMBOLL FRANCE

Votre nom de Projet : FRTOTMS020-P2 Sol\_sept2020\_GAL3-5\_ISDI

Votre référence de Projet : FRTOTMS020-P2 Référence du rapport SYNLAB : 13338234, version: 1.

Rotterdam, 30-10-2020

Cher(e) Madame/ Monsieur,


Ce rapport contient les résultats des analyses effectuées pour votre projet FRTOTMS020-P2. Les analyses ont été réalisées en accord avec votre commande. Les résultats rapportés se réfèrent aux échantillons tels qu'ils ont été reçus à SYNLAB. Le rapport reprend les descriptions des échantillons, la date de prélèvement (si fournie), le nom de projet et les analyses que vous avez indiqués sur le bon de commande. SYNLAB n'est pas responsable des données fournies par le client.

Ce rapport est constitué de 8 pages dont chromatogrammes si prévus, références normatives, informations sur les échantillons. Dans le cas d'une version 2 ou plus élevée, toute version antérieure n'est pas valable. Toutes les pages font partie intégrante de ce rapport, et seule une reproduction de l'ensemble du rapport est autorisée.

En cas de questions et/ou remarques concernant ce rapport, nous vous prions de contacter notre Service Client.

Toutes les analyses sont réalisées par SYNLAB Analytics & Services B.V., Steenhouwerstraat 15, Rotterdam, Pays Bas. Les analyses sous-traitées ou celles réalisées par les laboratoires SYNLAB en France (99-101 Avenue Louis Roche, Gennevilliers, France) sont indiquées sur le rapport.

Veuillez recevoir, Madame/ Monsieur, l'expression de nos cordiales salutations.







RAMBOLL FRANCE
Vincent DAMART

Page 2 sur 8

Rapport d'analyse

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5\_ISDI Date de commande 22-10-2020

Référence du projet FRTOTMS020-P2 Réf. du rapport 13338234 - 1 Date de commande 22-10-2020

Date de début 22-10-2020

Rapport du 30-10-2020

| Code    | Matrice | Réf. échan | tillon                                                    |     |  |  |  |  |  |
|---------|---------|------------|-----------------------------------------------------------|-----|--|--|--|--|--|
| 001     | Sol     | GAL3-5_T1  | GAL3-5_T1S(0.9-1.2)_200921 + GAL3-5_T1S(0.9-1.2)_200921_D |     |  |  |  |  |  |
| 002     | Sol     | GAL3-5_T7  | GAL3-5_T7N(0-0.5)_200917 + GAL3-5_T7N(0-0.5)_200917_D     |     |  |  |  |  |  |
| Analyse |         | Unité Q    | 001                                                       | 002 |  |  |  |  |  |

| Analyse                        | Unité       | Q   | 001                | 002               |
|--------------------------------|-------------|-----|--------------------|-------------------|
|                                |             | •   | 0 :                | 0 :               |
| prétraitement de l'échantillon | 0/          | Q   | Oui                | Oui               |
| matière sèche                  | % massiqu   | e Q | 54.2               | 69.1              |
| СОТ                            | mg/kg MS    | Q   | 13000              | 94000             |
| pH (KCI)                       | -           | Q   | 11.0               | 7.9               |
| température pour mes. pH       | °C          |     | 20.0               | 20.0              |
| COMPOSES AROMATIQUES           | VOLATILS    |     |                    |                   |
| benzène                        | mg/kg MS    | Q   | 0.10               | 0.02              |
| toluène                        | mg/kg MS    | Q   | 4.5 1)             | 0.03              |
| éthylbenzène                   | mg/kg MS    | Q   | 4.1 1)             | 0.06              |
| orthoxylène                    | mg/kg MS    | Q   | 4.8 1)             | 0.25              |
| para- et métaxylène            | mg/kg MS    | Q   | 11 1)              | 1.4               |
| xylènes                        | mg/kg MS    | Q   | 16                 | 1.7               |
| BTEX totaux                    | mg/kg MS    | Q   | 25                 | 1.8               |
|                                |             |     |                    |                   |
| HYDROCARBURES AROMA            |             |     |                    | 0 == 2)           |
| naphtalène                     | mg/kg MS    | Q   | 10                 | 0.28 2)           |
| acénaphtylène                  | mg/kg MS    | Q   | 0.29 2)            | 0.53              |
| acénaphtène                    | mg/kg MS    | Q   | 0.37               | 3.4 2)            |
| fluorène                       | mg/kg MS    | Q   | 0.37               | 2.0 2)            |
| phénanthrène                   | mg/kg MS    | Q   | 2.8                | 8.6 2)            |
| anthracène                     | mg/kg MS    | Q   | 0.33 2)            | 2.0 2)            |
| fluoranthène                   | mg/kg MS    | Q   | 0.05 2)            | 0.19 2)           |
| pyrène                         | mg/kg MS    | Q   | 0.44 2)            | 0.97 2)           |
| benzo(a)anthracène             | mg/kg MS    | Q   | 0.09 2)            | 0.29 2)           |
| chrysène                       | mg/kg MS    | Q   | 0.19               | 0.76              |
| benzo(b)fluoranthène           | mg/kg MS    | Q   | 0.05 2)            | 0.30              |
| benzo(k)fluoranthène           | mg/kg MS    | Q   | 0.02               | 0.15              |
| benzo(a)pyrène                 | mg/kg MS    | Q   | 0.08 2)            | 0.27              |
| dibenzo(ah)anthracène          | mg/kg MS    | Q   | 0.02 2)            | 0.12              |
| benzo(ghi)pérylène             | mg/kg MS    | Q   | 0.07 2)            | 0.31 2)           |
| indéno(1,2,3-cd)pyrène         | mg/kg MS    | Q   | 0.02               | 0.13              |
| Somme des HAP (16) - EPA       | mg/kg MS    | Q   | 15                 | 20                |
| POLYCHLOROBIPHENYLS (I         | PCB)        |     |                    |                   |
| PCB 28                         | μg/kg MS    | Q   | <1.1 3)            | <8.4 8)           |
| PCB 52                         | μg/kg MS    | Q   | <1.1 <sup>3)</sup> | <8.4 8)           |
| PCB 101                        | μg/kg MS    | Q   | <1.1 <sup>3)</sup> | <8.4 8)           |
| PCB 118                        | μg/kg MS    | Q   | <1.1 3)            | <8.4 8)           |
| PCB 138                        | μg/kg MS    | Q   | <1.1 3)            | <8.4 8)           |
| PCB 153                        | μg/kg MS    | Q   | <1.1 3)            | <8.4 8)           |
| PCB 180                        | μg/kg MS    | Q   | <1.1 3)            | <8.4 8)           |
| PCB totaux (7)                 | μg/kg MS    | Q   | <7.8 4)            | <59 <sup>4)</sup> |
| . 02 lollaux (1)               | P9/119 1110 | •   | 37.0               | 400               |

Les analyses notées Q sont accréditées par le RvA.







RAMBOLL FRANCE

Vincent DAMART

## Rapport d'analyse

Page 3 sur 8

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5\_ISDI

Référence du projet FRTOTMS020-P2 Réf. du rapport 13338234 - 1 Date de commande 22-10-2020
Date de début 22-10-2020
Rapport du 30-10-2020

| Code | Matrice | Réf. échantillon                                          |
|------|---------|-----------------------------------------------------------|
| 001  | Sol     | GAL3-5_T1S(0.9-1.2)_200921 + GAL3-5_T1S(0.9-1.2)_200921_D |
| 002  | Sol     | GAL3-5_T7N(0-0.5)_200917 + GAL3-5_T7N(0-0.5)_200917_D     |

| 002 Sol                             |             |   | , ,                | + GAL3-5_T7N(0-0.5) | , |
|-------------------------------------|-------------|---|--------------------|---------------------|---|
| Analyse                             | Unité       | Q | 001                | 002                 |   |
| HYDROCARBURES TOTAU                 | IX          |   |                    |                     |   |
| fraction C10-C12                    | mg/kg MS    |   | 620                | 1500                |   |
| fraction C12-C16                    | mg/kg MS    |   | 2600 <sup>5)</sup> | 8200 <sup>5)</sup>  |   |
| fraction C16-C21                    | mg/kg MS    |   | 1900               | 14000               |   |
| fraction C21-C35                    | mg/kg MS    |   | 3600               | 22000               |   |
| fraction C35-C40                    | mg/kg MS    |   | 390 <sup>6)</sup>  | 2900 <sup>6)</sup>  |   |
| hydrocarbures totaux C10-<br>C40    | mg/kg MS    | Q | 9100               | 49000               |   |
| LIXIVIATION                         |             |   |                    |                     |   |
| Lixiviation 24h - NF-<br>EN-12457-2 |             | Q | #                  | #                   |   |
| date de lancement                   |             |   | 27-10-2020         | 28-10-2020          |   |
| L/S                                 | ml/g        | Q | 10.00              | 10.00               |   |
| pH final ap. lix.                   | -           | Q | 11.97              | 8.31                |   |
| température pour mes. pH            | °C          |   | 19.4               | 18.9                |   |
| conductivité (25°C) ap. lix.        | μS/cm       | Q | 2120               | 388                 |   |
| ELUAT COT                           |             |   |                    |                     |   |
| COD, COT sur éluat                  | mg/kg MS    | Q | 120                | 320                 |   |
| ELUAT METAUX                        |             |   |                    |                     |   |
| antimoine                           | mg/kg MS    | Q | <0.039 7)          | 0.095 7)            |   |
| arsenic                             | mg/kg MS    | Q | <0.05 7)           | 0.14 7)             |   |
| baryum                              | mg/kg MS    | Q | 11 7)              | 0.39 7)             |   |
| cadmium                             | mg/kg MS    | Q | <0.004 7)          | <0.004 7)           |   |
| chrome                              | mg/kg MS    | Q | <0.01 7)           | <0.01 7)            |   |
| cuivre                              | mg/kg MS    | Q | 0.16 7)            | <0.05               |   |
| mercure                             | mg/kg MS    | Q | < 0.0005           | < 0.0005            |   |
| plomb                               | mg/kg MS    | Q | <0.1 7)            | <0.1 7)             |   |
| molybdène                           | mg/kg MS    | Q | <0.05 7)           | 0.32                |   |
| nickel                              | mg/kg MS    | Q | 0.10 7)            | <0.1 7)             |   |
| sélénium                            | mg/kg MS    | Q | <0.039 7)          | <0.039              |   |
| zinc                                | mg/kg MS    | Q | <0.2 7)            | <0.2 7)             |   |
| ELUAT COMPOSES INORG                |             |   |                    |                     |   |
| fraction soluble                    | mg/kg MS    | Q | 9120               | 2920                |   |
| ELUAT PHENOLS                       |             |   |                    |                     |   |
| Indice phénol                       | mg/kg MS    | Q | 0.18               | 0.12                |   |
| ELUAT DIVERSES ANALYS               | ES CHIMIQUE | S |                    |                     |   |
| fluorures                           | mg/kg MS    | Q | <2                 | 5.6                 |   |
| chlorures                           | mg/kg MS    | Q | 2200               | 110                 |   |
| sulfate                             | mg/kg MS    | Q | 107                | 782                 |   |
|                                     |             |   |                    |                     |   |

Les analyses notées Q sont accréditées par le RvA.







RAMBOLL FRANCE

Vincent DAMART

Page 4 sur 8

Rapport d'analyse

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5\_ISDI

Référence du projet FRTOTMS020-P2 Réf. du rapport 13338234 - 1 Date de commande 22-10-2020 Date de début 22-10-2020 Rapport du 30-10-2020

| Commentaire |                                                                                                                                                           |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1           | La limite de quantification a été augmentée à cause d'une interférence liée à la matrice.                                                                 |
| 2           | Résultat fourni à titre indicatif en raison de la présence de composants interférants                                                                     |
| 3           | Limite de quantification élevée en raison d'une faible matière sèche.                                                                                     |
| 4           | Limite de quantification de cette somme élevée en raison d'une dilution nécessaire, d'une interférence due à la matrice et/ou d'une faible matière sèche. |
| 5           | Présence de composants inférieurs à C10, cela ninfluence pas le résultat rapporté                                                                         |
| 6           | Présence de composants supérieurs à C40, cela n influence pas le résultat rapporté                                                                        |
| 7           | Analysés par ICP-MS, conforme NEN-EN-ISO 17294-2, au lieu d ICP-AES                                                                                       |
| 8           | Limite de quantification élevée en raison d'une dilution nécessaire.                                                                                      |







RAMBOLL FRANCE
Vincent DAMART

Page 5 sur 8

Rapport d'analyse

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5\_ISDI

Référence du projet FRTOTMS020-P2 Réf. du rapport 13338234 <sup>-</sup> 1 Date de commande 22-10-2020
Date de début 22-10-2020
Rapport du 30-10-2020

| Analyse                        | Matrice | Référence normative                                                                                                          |  |
|--------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------|--|
| prétraitement de l'échantillon | Sol     | Sol: conforme à NF EN 16179). Sol (AS3000): conforme à AS3000 e conforme à NEN-EN 16179                                      |  |
| matière sèche                  | Sol     | Sol: Equivalent à ISO 11465 et equivalent à NEN-EN 15934. Sol<br>(AS3000): Conforme à AS3010-2 et équivalente à NEN-EN 15934 |  |
| COT                            | Sol     | Conforme à NEN-EN 13137:2001                                                                                                 |  |
| pH (KCI)                       | Sol     | Conforme à NEN-ISO 10390, NF ISO 10390 et conforme à NEN-EN 15933, NF EN 15933 et conforme à CMA 2/II.A.20                   |  |
| benzène                        | Sol     | conforme à NF EN ISO 22155                                                                                                   |  |
| toluène                        | Sol     | Idem                                                                                                                         |  |
| éthylbenzène                   | Sol     | Idem                                                                                                                         |  |
| orthoxylène                    | Sol     | Idem                                                                                                                         |  |
| para- et métaxylène            | Sol     | Idem                                                                                                                         |  |
| xylènes                        | Sol     | ldem                                                                                                                         |  |
| BTEX totaux                    | Sol     | ldem                                                                                                                         |  |
| naphtalène                     | Sol     | Conforme à XP CEN/TS 16181 et conforme à NF ISO 18287 (extraction par agitation acétone/hexane, GCMS)                        |  |
| acénaphtylène                  | Sol     | ldem                                                                                                                         |  |
| acénaphtène                    | Sol     | ldem                                                                                                                         |  |
| fluorène                       | Sol     | ldem                                                                                                                         |  |
| phénanthrène                   | Sol     | ldem                                                                                                                         |  |
| anthracène                     | Sol     | ldem                                                                                                                         |  |
| fluoranthène                   | Sol     | ldem                                                                                                                         |  |
| pyrène                         | Sol     | ldem                                                                                                                         |  |
| benzo(a)anthracène             | Sol     | ldem                                                                                                                         |  |
| chrysène                       | Sol     | ldem                                                                                                                         |  |
| benzo(b)fluoranthène           | Sol     | ldem                                                                                                                         |  |
| benzo(k)fluoranthène           | Sol     | ldem                                                                                                                         |  |
| benzo(a)pyrène                 | Sol     | Idem                                                                                                                         |  |
| dibenzo(ah)anthracène          | Sol     | Idem                                                                                                                         |  |
| benzo(ghi)pérylène             | Sol     | Idem                                                                                                                         |  |
| indéno(1,2,3-cd)pyrène         | Sol     | Idem                                                                                                                         |  |
| Somme des HAP (16) - EPA       | Sol     | Conforme à NF-ISO 18287 et XP CEN/TS 16181 (extraction par agitation acétone/hexane, GCMS)                                   |  |
| PCB 28                         | Sol     | Conforme à NF EN 16167 (extraction par agitation acétone/hexane, GCMS)                                                       |  |
| PCB 52                         | Sol     | Idem                                                                                                                         |  |
| PCB 101                        | Sol     | ldem                                                                                                                         |  |
| PCB 118                        | Sol     | ldem                                                                                                                         |  |
| PCB 138                        | Sol     | Idem                                                                                                                         |  |
| PCB 153                        | Sol     | Idem                                                                                                                         |  |
| PCB 180                        | Sol     | Idem                                                                                                                         |  |
| PCB totaux (7)                 | Sol     | Idem                                                                                                                         |  |
| fraction C10-C12               | Sol     | Conforme à NF EN ISO 16703 (Extraction par agitation acétone/<br>hexane, purification avec Florisil)                         |  |
| fraction C12-C16               | Sol     | Idem                                                                                                                         |  |
| fraction C16-C21               | Sol     | Idem                                                                                                                         |  |
| fraction C21-C35               | Sol     | ldem                                                                                                                         |  |







RAMBOLL FRANCE
Vincent DAMART

Rapport d'analyse

Page 6 sur 8

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5\_ISDI

Référence du projet FRTOTMS020-P2 Réf. du rapport 13338234 - 1 Date de commande 22-10-2020
Date de début 22-10-2020
Rapport du 30-10-2020

| Analyse                         | Matrice   | Référence normative                                |
|---------------------------------|-----------|----------------------------------------------------|
| fraction C35-C40                | Sol       | Idem                                               |
| hydrocarbures totaux C10-C40    | Sol       | Idem                                               |
| Lixiviation 24h - NF-EN-12457-2 | Sol Eluat | Conforme à NF-EN 12457-2                           |
| pH final ap. lix.               | Sol Eluat | Conforme à NEN-EN-ISO 10523                        |
| conductivité (25°C) ap. lix.    | Sol Eluat | Conforme à NEN-ISO 7888 et conforme à EN 27888     |
| COD, COT sur éluat              | Sol Eluat | Conforme à NEN-EN 1484, NF EN 1484                 |
| antimoine                       | Sol Eluat | Conforme à NEN 6966 et conforme à NEN-EN-ISO 11885 |
| arsenic                         | Sol Eluat | Idem                                               |
| baryum                          | Sol Eluat | Idem                                               |
| cadmium                         | Sol Eluat | Idem                                               |
| chrome                          | Sol Eluat | Idem                                               |
| cuivre                          | Sol Eluat | Idem                                               |
| mercure                         | Sol Eluat | Conforme à NEN-EN-ISO 17852, NF EN ISO 17852       |
| plomb                           | Sol Eluat | Conforme à NEN 6966 et conforme à NEN-EN-ISO 11885 |
| molybdène                       | Sol Eluat | Idem                                               |
| nickel                          | Sol Eluat | Idem                                               |
| sélénium                        | Sol Eluat | Idem                                               |
| zinc                            | Sol Eluat | Idem                                               |
| fraction soluble                | Sol Eluat | Conforme à NEN-EN 15216                            |
| Indice phénol                   | Sol Eluat | Conforme à NEN-EN-ISO 14402                        |
| fluorures                       | Sol Eluat | Conforme à NEN-EN-ISO 10304-1, NF EN ISO 10304-1   |
| chlorures                       | Sol Eluat | Idem                                               |
| sulfate                         | Sol Eluat | ldem                                               |

| Code | Code barres | Date de réception | Date prelèvement | Flaconnage |
|------|-------------|-------------------|------------------|------------|
| 001  | V7968043    | 23-09-2020        | 21-09-2020       | ALC201     |
| 001  | V7968044    | 23-09-2020        | 21-09-2020       | ALC201     |
| 001  | V7968046    | 23-09-2020        | 21-09-2020       | ALC201     |
| 002  | V2111290    | 23-09-2020        | 17-09-2020       | ALC210     |
| 002  | V2111289    | 23-09-2020        | 17-09-2020       | ALC210     |
| 002  | V2111291    | 23-09-2020        | 17-09-2020       | ALC210     |



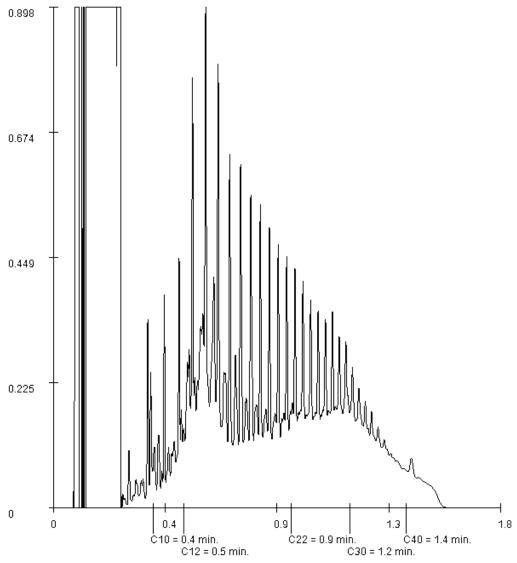




RAMBOLL FRANCE Page 7 sur 8

Rapport d'analyse Vincent DAMART

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5\_ISDI Date de commande 22-10-2020 Référence du projet FRTOTMS020-P2 Date de début 22-10-2020 Rapport du 30-10-2020 Réf. du rapport 13338234 - 1


Référence de l'échantillon:

Information relative aux échantillons GAL3-5\_T1S(0.9-1.2)\_200921 + GAL3-5\_T1S(0.9-1.2)\_200921\_D

### Détermination de la chaîne de carbone

C9-C14 essence kérosène et pétrole C10-C16 diesel et gazole C10-C28 C20-C36 huile de moteur mazout C10-C36

Les pics C10 et C40 sont introduits par le laboratoire et sont utilisés comme étalons internes.





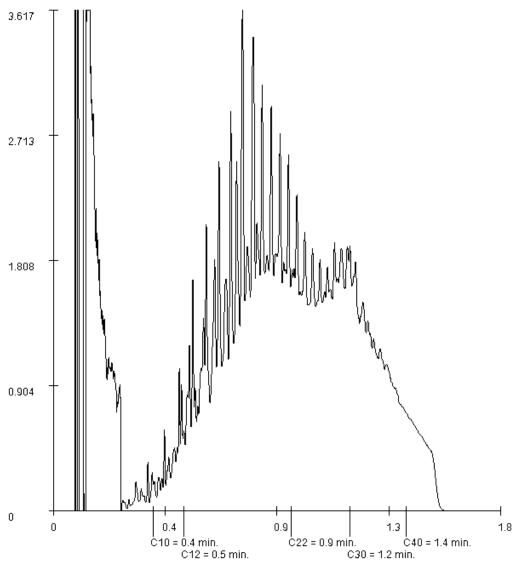




RAMBOLL FRANCE Page 8 sur 8 Rapport d'analyse

Vincent DAMART

Projet FRTOTMS020-P2 Sol\_sept2020\_GAL3-5\_ISDI Date de commande 22-10-2020 Référence du projet FRTOTMS020-P2 Date de début 22-10-2020 Réf. du rapport 13338234 - 1 Rapport du 30-10-2020


Référence de l'échantillon:

Information relative aux échantillons GAL3-5\_T7N(0-0.5)\_200917 + GAL3-5\_T7N(0-0.5)\_200917\_D

### Détermination de la chaîne de carbone

C9-C14 essence kérosène et pétrole C10-C16 diesel et gazole C10-C28 huile de moteur C20-C36 mazout C10-C36

Les pics C10 et C40 sont introduits par le laboratoire et sont utilisés comme étalons internes.









### Rapport d'analyse

#### SYNLAB Analytics & Services B.V.

Adresse de correspondance 99-101 avenue Louis Roche · F-92230 Gennevilliers Tel.: +33 (0)155 90 52 50 · Fax: +33 (0)155 90 52 51 www.synlab.fr

Page 1 sur 8

Vincent DAMART Immeuble Le Cézanne 155 rue de Broglie F-13100 AIX-EN-PROVENCE

RAMBOLL FRANCE

Votre nom de Projet : FRTOTMS020-P2\_ESO\_092020

Votre référence de Projet : FRTOTMS020-P2 Référence du rapport SYNLAB : 13322857, version: 1.

Rotterdam, 04-10-2020

Cher(e) Madame/ Monsieur,

Ce rapport contient les résultats des analyses effectuées pour votre projet FRTOTMS020-P2. Les analyses ont été réalisées en accord avec votre commande. Les résultats rapportés se réfèrent aux échantillons tels qu'ils ont été reçus à SYNLAB. Le rapport reprend les descriptions des échantillons, la date de prélèvement (si fournie), le nom de projet et les analyses que vous avez indiqués sur le bon de commande. SYNLAB n'est pas responsable des données fournies par le client.

Ce rapport est constitué de 8 pages dont chromatogrammes si prévus, références normatives, informations sur les échantillons. Dans le cas d'une version 2 ou plus élevée, toute version antérieure n'est pas valable. Toutes les pages font partie intégrante de ce rapport, et seule une reproduction de l'ensemble du rapport est autorisée.

En cas de questions et/ou remarques concernant ce rapport, nous vous prions de contacter notre Service Client.

Toutes les analyses sont réalisées par SYNLAB Analytics & Services B.V., Steenhouwerstraat 15, Rotterdam, Pays Bas. Les analyses sous-traitées ou celles réalisées par les laboratoires SYNLAB en France (99-101 Avenue Louis Roche, Gennevilliers, France) sont indiquées sur le rapport.

Veuillez recevoir, Madame/ Monsieur, l'expression de nos cordiales salutations.







Matrice

Code

RAMBOLL FRANCE
Vincent DAMART

Rapport d'analyse

Réf. échantillon

Projet FRTOTMS020-P2\_ESO\_092020 Date de commande 25-09-2020

Page 2 sur 8

 Référence du projet
 FRTOTMS020-P2
 Date de début
 28-09-2020

 Réf. du rapport
 13322857 - 1
 Rapport du
 04-10-2020

| 001 Eau souterrain      |          | /IW1_20092 |        |        |        |       |  |
|-------------------------|----------|------------|--------|--------|--------|-------|--|
| 02 Eau souterrain       | e N      | /IW2_20092 | 24     |        |        |       |  |
| 003 Eau souterrain      | e N      | /IW3_20092 | 24     |        |        |       |  |
| 004 Eau souterrain      | e N      | /IWB_20092 | 24     |        |        |       |  |
| nalyse                  | Unité    | Q          | 001    | 002    | 003    | 004   |  |
|                         |          |            |        |        |        |       |  |
| METAUX                  |          |            |        |        |        |       |  |
| rsenic                  | μg/l     | Q          | <5     | 5.6    | <5     | <5    |  |
| admium                  | μg/l     | Q          | <0.20  | <0.20  | <0.20  | <0.20 |  |
| rome                    | μg/l     | Q          | <1     | <1     | <1     | <1    |  |
| uivre                   | µg/l     | Q          | 2.4    | <2.0   | 3.4    | <2.0  |  |
| ercure                  | μg/l     | Q          | <0.05  | < 0.05 | <0.05  | <0.05 |  |
| omb                     | μg/l     | Q          | 2.3    | <2.0   | 2.3    | <2.0  |  |
| ckel                    | μg/l     | Q          | 3.5    | <3     | <3     | <3    |  |
| nc                      | μg/l     | Q          | <10    | <10    | <10    | <10   |  |
| OMPOSES AROMATIQUES     | VOLATILS | 3          |        |        |        |       |  |
| enzène                  | μg/l     | Q          | <0.2   | <0.2   | <0.2   | <0.2  |  |
| luène                   | μg/l     | Q          | <0.2   | <0.2   | <0.2   | <0.2  |  |
| nylbenzène              | μg/l     | Q          | <0.2   | <0.2   | <0.2   | <0.2  |  |
| thoxylène               | μg/l     | Q          | <0.2   | <0.2   | <0.2   | <0.2  |  |
| ara- et métaxylène      | μg/l     | Q          | <0.2   | <0.2   | <0.2   | <0.2  |  |
| lènes                   | μg/l     | Q          | < 0.40 | <0.40  | < 0.40 | <0.40 |  |
| TEX totaux              | μg/l     | Q          | <1.0   | <1.0   | <1.0   | <1.0  |  |
|                         |          |            |        |        |        |       |  |
| YDROCARBURES AROMAT     |          |            |        |        |        |       |  |
| aphtalène               | μg/l     | Q          | <0.1   | <0.1   | <0.1   | <0.1  |  |
| cénaphtylène            | μg/l     | Q          | <0.1   | <0.1   | <0.1   | <0.1  |  |
| cénaphtène              | μg/l     | Q          | <0.1   | <0.1   | <0.1   | <0.1  |  |
| ıorène                  | μg/l     | Q          | <0.05  | <0.05  | <0.05  | <0.05 |  |
| nénanthrène             | μg/l     | Q          | <0.02  | <0.02  | <0.02  | 0.05  |  |
| nthracène               | μg/l     | Q          | <0.02  | <0.02  | <0.02  | <0.02 |  |
| ıoranthène              | µg/l     | Q          | <0.02  | <0.02  | <0.02  | <0.02 |  |
| rène                    | μg/l     | Q          | <0.02  | <0.02  | <0.02  | <0.02 |  |
| enzo(a)anthracène       | μg/l     | Q          | <0.02  | <0.02  | <0.02  | <0.02 |  |
| rysène                  | μg/l     | Q          | <0.02  | <0.02  | <0.02  | <0.02 |  |
| enzo(b)fluoranthène     | μg/l     | Q          | <0.02  | <0.02  | <0.02  | <0.02 |  |
| enzo(k)fluoranthène     | μg/l     | Q          | <0.01  | <0.01  | <0.01  | <0.01 |  |
| enzo(a)pyrène           | μg/l     | Q          | <0.01  | <0.01  | <0.01  | <0.01 |  |
| benzo(ah)anthracène     | μg/l     | Q          | <0.02  | <0.02  | <0.02  | <0.02 |  |
| enzo(ghi)pérylène       | μg/l     | Q          | <0.02  | <0.02  | < 0.02 | <0.02 |  |
| déno(1,2,3-cd)pyrène    | μg/l     | Q          | <0.02  | <0.02  | < 0.02 | <0.02 |  |
| omme des HAP (10) VROM  | μg/l     | Q          | <0.3   | <0.3   | <0.3   | <0.3  |  |
| omme des HAP (16) - EPA | μg/l     | Q          | <0.57  | <0.57  | <0.57  | <0.57 |  |
| YDROCARBURES TOTAUX     |          |            |        |        |        |       |  |
| action C5-C6            | μg/l     | Q          | <10    | <10    | <10    | <10   |  |
| action C6-C8            | μg/l     | Q          | <10    | <10    | <10    | <10   |  |
|                         |          | Q          |        |        |        |       |  |
| action C8-C10           | μg/l     |            | <10    | <10    | <10    | <10   |  |

Les analyses notées Q sont accréditées par le RvA.







RAMBOLL FRANCE
Vincent DAMART

Page 3 sur 8

Rapport d'analyse

Projet FRTOTMS020-P2\_ESO\_092020 Date de commande 25-09-2020

Référence du projetFRTOTMS020-P2Date de débutRéf. du rapport13322857 - 1Rapport du

| Code | Matrice         | Réf. échantillon |
|------|-----------------|------------------|
| 001  | Eau souterraine | MW1_200924       |
| 002  | Eau souterraine | MW2_200924       |
| 003  | Eau souterraine | MW3_200924       |
| 004  | Eau souterraine | MWB_200924       |

| Analyse                           | Unité | Q | 001              | 002              | 003              | 004              |
|-----------------------------------|-------|---|------------------|------------------|------------------|------------------|
| fraction C10-C12                  | μg/l  |   | <5 <sup>1)</sup> | <5 1)            | <5 <sup>1)</sup> | <5 1)            |
| fraction C12-C16                  | μg/l  |   | <5 <sup>1)</sup> | <5 <sup>1)</sup> | <5 <sup>1)</sup> | <5 1)            |
| fraction C16-C21                  | μg/l  |   | <5 <sup>1)</sup> | <5 <sup>1)</sup> | <5 <sup>1)</sup> | <5 <sup>1)</sup> |
| fraction C21-C40                  | μg/l  |   | 25 <sup>1)</sup> | 60 <sup>1)</sup> | <5 <sup>1)</sup> | <5 <sup>1)</sup> |
| Hydrocarbures Volatils C5-<br>C10 | μg/l  | Q | <30              | <30              | <30              | <30              |
| hydrocarbures totaux C10-<br>C40  | μg/l  | Q | 25 <sup>1)</sup> | 60 1)            | <20 1)           | <20 1)           |

Les analyses notées Q sont accréditées par le RvA.



28-09-2020 04-10-2020





RAMBOLL FRANCE
Vincent DAMART

Page 4 sur 8

Rapport d'analyse

Projet FRTOTMS020-P2\_ESO\_092020 Date de commande 25-09-2020

 Référence du projet
 FRTOTMS020-P2
 Date de début
 28-09-2020

 Réf. du rapport
 13322857 - 1
 Rapport du
 04-10-2020

### Commentaire

Le flacon livré ne présente pas d'espace de tête (bouteille complètement remplie). Les résultats sont de ce fait indicatifs.







RAMBOLL FRANCE
Vincent DAMART

Rapport d'analyse

Page 5 sur 8

Projet FRTOTMS020-P2\_ESO\_092020

Référence du projet FRTOTMS020-P2 Réf. du rapport 13322857 - 1 

 Date de commande 25-09-2020

 Date de début 28-09-2020

 Rapport du 04-10-2020

| Analyse                       | Matrice         | Référence normative                                |
|-------------------------------|-----------------|----------------------------------------------------|
| arsenic                       | Eau souterraine | Conforme à NEN 6966 et conforme à NEN-EN-ISO 11885 |
| cadmium                       | Eau souterraine | Idem                                               |
| chrome                        | Eau souterraine | ldem                                               |
| cuivre                        | Eau souterraine | ldem                                               |
| mercure                       | Eau souterraine | Conforme à NEN-EN-ISO 17852                        |
| olomb                         | Eau souterraine | Conforme à NEN 6966 et conforme à NEN-EN-ISO 11885 |
| nickel                        | Eau souterraine | Idem                                               |
| zinc                          | Eau souterraine | Idem                                               |
| benzène                       | Eau souterraine | conforme à ISO 11423-1                             |
| toluène                       | Eau souterraine | Idem                                               |
| éthylbenzène                  | Eau souterraine | Idem                                               |
| orthoxylène                   | Eau souterraine | Idem                                               |
| para- et métaxylène           | Eau souterraine | Idem                                               |
| xylènes                       | Eau souterraine | Idem                                               |
| BTEX totaux                   | Eau souterraine | Idem                                               |
| naphtalène                    | Eau souterraine | Méthode interne                                    |
| acénaphtylène                 | Eau souterraine | Idem                                               |
| acénaphtène                   | Eau souterraine | Idem                                               |
| fluorène                      | Eau souterraine | Idem                                               |
| phénanthrène                  | Eau souterraine | ldem                                               |
| anthracène                    | Eau souterraine | ldem                                               |
| fluoranthène                  | Eau souterraine | Idem                                               |
| oyrène                        | Eau souterraine | Idem                                               |
| benzo(a)anthracène            | Eau souterraine | Idem                                               |
| chrysène                      | Eau souterraine | ldem                                               |
| benzo(b)fluoranthène          | Eau souterraine | Idem                                               |
| oenzo(k)fluoranthène          | Eau souterraine | Idem                                               |
| penzo(a)pyrène                | Eau souterraine | Idem                                               |
| dibenzo(ah)anthracène         | Eau souterraine | Idem                                               |
| penzo(ghi)pérylène            | Eau souterraine | Idem                                               |
| ndéno(1,2,3-cd)pyrène         | Eau souterraine | Idem                                               |
| Somme des HAP (10) VROM       | Eau souterraine | Idem                                               |
| Somme des HAP (16) - EPA      | Eau souterraine | Idem                                               |
| fraction C5-C6                | Eau souterraine | Méthode interne, analyse par GC/MS                 |
| fraction C6-C8                | Eau souterraine | Idem                                               |
| fraction C8-C10               | Eau souterraine | Idem                                               |
| Hydrocarbures Volatils C5-C10 | Eau souterraine | Méthode interne (headspace GCMS)                   |
| hydrocarbures totaux C10-C40  | Eau souterraine | Conforme à NEN-EN-ISO 9377-2                       |

| Code | Code barres | Date de réception | Date prelèvement | Flaconnage |
|------|-------------|-------------------|------------------|------------|
| 001  | S1088684    | 28-09-2020        | 24-09-2020       | ALC237     |
| 001  | B1957872    | 28-09-2020        | 24-09-2020       | ALC204     |
| 001  | G6869364    | 28-09-2020        | 24-09-2020       | ALC236     |
| 001  | G6869332    | 28-09-2020        | 24-09-2020       | ALC236     |
| 002  | G6869330    | 28-09-2020        | 24-09-2020       | ALC236     |







RAMBOLL FRANCE
Vincent DAMART

Rapport d'analyse

Page 6 sur 8

Projet FRTOTMS020-P2\_ESO\_092020

Référence du projet FRTOTMS020-P2 Réf. du rapport 13322857 - 1 Date de commande 25-09-2020
Date de début 28-09-2020
Rapport du 04-10-2020

| Code | Code barres | Date de réception | Date prelèvement | Flaconnage |
|------|-------------|-------------------|------------------|------------|
| 002  | S1088683    | 28-09-2020        | 24-09-2020       | ALC237     |
| 002  | G6869333    | 28-09-2020        | 24-09-2020       | ALC236     |
| 002  | B1958048    | 28-09-2020        | 24-09-2020       | ALC204     |
| 003  | S1041741    | 28-09-2020        | 24-09-2020       | ALC237     |
| 003  | G6869363    | 28-09-2020        | 24-09-2020       | ALC236     |
| 003  | B1893790    | 28-09-2020        | 24-09-2020       | ALC204     |
| 003  | G6869334    | 28-09-2020        | 24-09-2020       | ALC236     |
| 004  | G6869331    | 28-09-2020        | 24-09-2020       | ALC236     |
| 004  | S1041720    | 28-09-2020        | 24-09-2020       | ALC237     |
| 004  | G6869335    | 28-09-2020        | 24-09-2020       | ALC236     |
| 004  | B1967340    | 28-09-2020        | 24-09-2020       | ALC204     |







RAMBOLL FRANCE

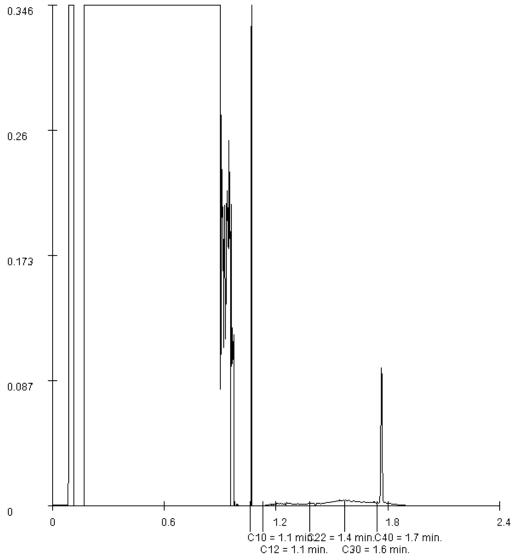
Vincent DAMART

Page 7 sur 8

Rapport d'analyse

Projet FRTOTMS020-P2\_ESO\_092020

Référence du projet FRTOTMS020-P2 Réf. du rapport 13322857 - 1 Date de commande 25-09-2020
Date de début 28-09-2020
Rapport du 04-10-2020


Référence de l'échantillon: 001

Information relative aux échantillons MW1\_200924

### Détermination de la chaîne de carbone

essence C9-C14
kérosène et pétrole C10-C16
diesel et gazole C10-C28
huile de moteur C20-C36
mazout C10-C36

Les pics C10 et C40 sont introduits par le laboratoire et sont utilisés comme étalons internes.







SYNLAB Analytics & Services B.V. est accrédité sous le n° L028 par le RvA (Raad voor Accreditatie), conformément aux critères des laboratoires d'analyse EN ISO/IEC 17025:2017. Toutes nos prestations sont



RAMBOLL FRANCE Page 8 sur 8
Vincent DAMART Rapport d'analyse

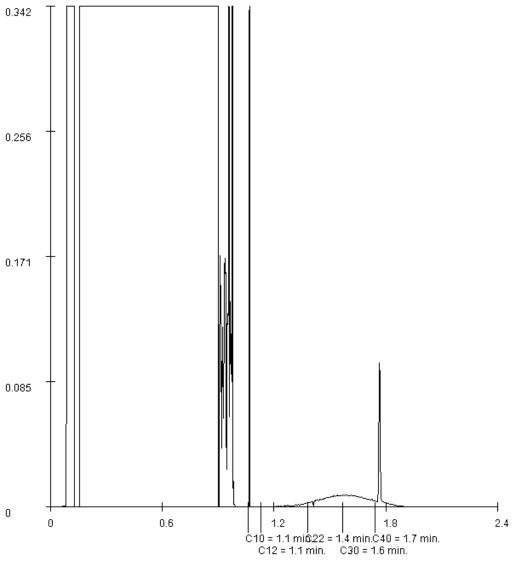
Projet FRTOTMS020-P2\_ESO\_092020

Référence du projet FRTOTMS020-P2 Réf. du rapport 13322857 - 1 

 Date de commande 25-09-2020

 Date de début
 28-09-2020

 Rapport du
 04-10-2020


Référence de l'échantillon: 002

Information relative aux échantillons MW2\_200924

### Détermination de la chaîne de carbone

essence C9-C14
kérosène et pétrole C10-C16
diesel et gazole C10-C28
huile de moteur C20-C36
mazout C10-C36

Les pics C10 et C40 sont introduits par le laboratoire et sont utilisés comme étalons internes.







Sites du Languedoc – Rapport sur les investigations et les prélèvements libératoires réalisés sur le site de Gallician 3 et 5 (GAL3 et GAL5)

ANNEXE 8
TABLEAU DE SYNTHESE DES CONCENTRATIONS DANS LES SOLS –
CAMPAGNES DE NOVEMBRE 2019 ET SEPTEMBRE 2020

|                                                          |                      |            |           | Ouvrage                          | GAL3-5_S0                            | GAL3-5_S1       | GAL3-5_S1          | GAL3              |                    |                   | 5_S2bis             | GAL3-5_S3        | GAL3-5_S4         | GAL3-5_S5              | GAL3-5_S5       | GAL3-5_S6     | GAL3-5_S8         | GAL3-5_S8         | GAL3-5_S10       |                   | -5_S11            | GAL3-           | 5_S12         |
|----------------------------------------------------------|----------------------|------------|-----------|----------------------------------|--------------------------------------|-----------------|--------------------|-------------------|--------------------|-------------------|---------------------|------------------|-------------------|------------------------|-----------------|---------------|-------------------|-------------------|------------------|-------------------|-------------------|-----------------|---------------|
| PARAMETRE                                                | Unité                | (1)        | (2)       | Profondeur<br>LQ*                | 0-1,5                                | 0-0,3           | 0,3-1              | 0-                | 0,6<br>Pack ISDI * | 1,1               | -1,3<br>Pack ISDI * | 0-1              | 0-3               | 0-0,4                  | 0,4-0,9         | 0-1,5         | 0-0,7             | 0,7-1,5           | 0-1.2            | 0.3-0.8           | 1.3-1.5           | 0.4-1           | 1-1.3         |
| broyage                                                  | -                    |            |           |                                  |                                      |                 |                    |                   | T dck T3DT         |                   | T dCK T3DT          |                  |                   |                        |                 |               |                   |                   |                  |                   |                   |                 |               |
| matière sèche                                            | % massique           | <30        |           |                                  | 87.7                                 | 78.8            | 73.8               | 79                | 70.2               | 77.5              | 63.1                | 80.7             | 93.9              | 80.8                   | 78.6            | 82            | 78.6              | 73.4              | 79.5             | 76.1              | 81                | 84.2            | 75.8          |
|                                                          |                      |            |           |                                  | 07.7                                 | 76.6            | 73.0               | 17                |                    | 77.5              |                     | 00.7             | 73.7              | 00.0                   | 70.0            | 02            | 70.0              | 73.4              | 77.5             | 70.1              | 01                | 04.2            | 73.0          |
| COT                                                      | mg/kg MS             | 30 000     |           | <2 000                           | -                                    | -               | -                  |                   | 17 000             | -                 | 22 000              | -                | -                 | -                      | -               |               | -                 | -                 | -                | -                 | -                 | -               | -             |
| température pour mes. pH<br>pH (KCI)                     | °C<br>-              |            |           | <1<br><1                         | -                                    | -               | -                  | -                 | 20.5<br>9.6        | -                 | 20.8<br>7.8         | -                | -                 | -                      | -               | -             | -                 | -                 | -                | -                 | -                 | -               | -             |
| METAUX<br>arsenic                                        | mg/kg MS             |            | 60        | <1                               | 10                                   | 20              | 52                 | <u>16</u>         | <u>15</u>          | 21                | 20                  | 14               | <u>18</u>         | 6.5                    | 11              | 11            | <u>11</u>         | 25                | -                | -                 | -                 | _               | -             |
| cadmium<br>chrome                                        | mg/kg MS<br>mg/kg MS |            | 2<br>150  | <0.2<br><1                       | <<br>60                              | <<br>39         | <u>0.6</u><br>30   | 0.25<br>38        | <u>0.25</u><br>42  | 0.29<br>33        | <u>0.37</u><br>41   | <<br>63          | <<br>42           | <<br>44                | <<br>34         | 32            | <<br>35           | <u>0.38</u><br>46 | -                | -                 | -                 | -               | -             |
| cuivre<br>mercure                                        | mg/kg MS<br>mg/kg MS |            | 62<br>2.3 | <1<br><0.05                      | 40                                   | 21              | 110<br>0.36        | <u>69</u><br>0.68 | <u>42</u><br>0.07  | <u>61</u><br>0.13 | <u>62</u><br>0.14   | 140              | 18                | 19                     | 13              | 11            | 23                | 39                | -                | -                 | -                 | -               | -             |
| plomb<br>nickel                                          | mg/kg MS<br>mg/kg MS |            | 90        | <10<br><1                        | 14<br>36                             | <u>27</u><br>32 | 120<br>32          | 76<br>30          | 54<br>34           | 84<br>29          | 87<br>30            | <u>54</u><br>44  | <u>22</u><br>28   | <u>41</u><br>47        | <u>22</u><br>25 | 15<br>24      | <u>21</u><br>27   | <u>37</u><br>50   | -                | -                 | -                 | -               | -             |
| zinc                                                     | mg/kg MS             |            | 250       | <10                              | 33                                   | 65              | 300<br>300         | 100               | 130                | 170               | 140                 | <u>70</u>        | 34<br>34          | <u>47</u><br><u>58</u> | 38<br>38        | 27            | <u>41</u>         | 130               | -                | -                 | -                 | -               | -<br>-        |
| COMPOSES AROMATIQUES benzène                             | mg/kg MS             |            |           | <0.02 / <0.05*                   | <                                    | <               | 0.26               | 0.02              | <                  | 0.04              | <                   | 0.1              | <                 | <                      | <               | <             | <                 | <                 | -                | -                 | -                 | -               | -             |
| toluène<br>éthylbenzène                                  | mg/kg MS<br>mg/kg MS |            |           | <0.02 / <0.05*<br><0.02 / <0.05* | <                                    | <               | 0.29               | 0.04              | 0.08<br>0.07       | 0.07              | 0.07                | 0.16<br>0.02     | <                 | < <                    | <               | < <           | <                 | <                 | -                | -                 | -                 | -               | <u>-</u><br>- |
| orthoxylène<br>para- et métaxylène                       | mg/kg MS<br>mg/kg MS |            |           | <0.02 / <0.05*<br><0.02 / <0.05* | <                                    | < <             | 0.04               | 0.04              | 0.14               | 0.07              | 0.09                | 0.03<br>0.14     | <                 | < <                    | <               | < <           | <                 | <                 | -                | -                 | -                 | -               | -             |
| xylènes<br>BTEX totaux                                   | mg/kg MS<br>mg/kg MS | 6          |           | <0.04 / <0.10*<br><0.02 / <0.25* | <                                    | <               | 0.16<br>0.73       | 0.04              | 0.14<br>0.29       | 0.07<br>0.18      | <                   | 0.17<br>0.45     | <                 | <                      | <               | <             | <                 | <                 | -                | -                 | -                 | _               | -             |
| HYDROCARBURES AROMAT naphtalène                          |                      | CYCLIQUE   | S         | <0.01 / <0.02*                   |                                      | 0.04            | 0.57               |                   | 0.37               | 0.37              | 0.86                | 0.05             |                   | 0.02                   | 0.02            |               |                   |                   | 0.34             |                   |                   | 0.01            |               |
| acénaphtylène                                            | mg/kg MS             |            |           | <0.01 / <0.02*                   | <                                    | <               | <                  | <                 | 0.02               | 0.1<br>0.1        | 0.14                | <                | <                 | < .02                  | <               | <             | <                 | <                 | 0.01             | <                 | <                 | <               | <             |
| acénaphtène<br>fluorène                                  | mg/kg MS<br>mg/kg MS |            |           | <0.01 / <0.02*<br><0.01 / <0.02* | <                                    | < <             | < .                | <                 | 0.08               | 0.14              | 0.44                | < <              | <                 | < <                    | <               | <             | <                 | <                 | < <              | < <               | <                 | < <             | <             |
| phénanthrène<br>anthracène                               | mg/kg MS<br>mg/kg MS |            |           | <0.01 / <0.02*<br><0.01 / <0.02* | < <                                  | 0.1<br>0.02     | 4<br>0.7           | <                 | 0.27<br>0.06       | 1.7<br>0.33       | 1.8<br>0.23         | 0.12             | <                 | 0.02                   | < <             | < <           | < <               | < <               | 0.15<br>0.03     | < <               | < <               | < <             | < <           |
| fluoranthène<br>pyrène                                   | mg/kg MS<br>mg/kg MS |            |           | <0.01 / <0.02*<br><0.01 / <0.02* | 0.01<br><                            | 0.22<br>0.21    | 11<br>10           | < <               | 0.16<br>0.19       | 2.4               | 0.16<br>0.36        | 0.2<br>0.17      | <                 | 0.02                   | < <             | < <           | 0.02<br>0.01      | < <               | 0.23<br>0.21     | 0.02<br>0.02      | < <               | 0.05<br>0.05    | < <           |
| benzo(a)anthracène<br>chrysène                           | mg/kg MS<br>mg/kg MS |            |           | <0.01 / <0.02*<br><0.01 / <0.02* | < <                                  | 0.16<br>0.15    | 9.3<br>10          | < <               | 0.11<br>0.08       | 1.2               | 0.11<br>0.18        | 0.13<br>0.14     | < <               | 0.01                   | 0.02            | < <           | < <               | < <               | 0.19<br>0.18     | 0.01              | < <               | 0.01<br>0.01    | < <           |
| benzo(b)fluoranthène<br>benzo(k)fluoranthène             | mg/kg MS<br>mg/kg MS |            |           | <0.01 / <0.02*<br><0.01 / <0.02* | < <                                  | 0.21<br>0.11    | 12<br>6            | <                 | 0.15<br>0.07       | 1.1<br>0.56       | 0.14<br>0.06        | 0.15<br>0.08     | <                 | 0.01                   | <               | < <           | < <               | < <               | 0.32<br>0.16     | 0.01              | < <               | < <             | < <           |
| benzo(a)pyrène<br>dibenzo(ah)anthracène                  | mg/kg MS<br>mg/kg MS |            |           | <0.01 / <0.02*<br><0.01 / <0.02* | 3                                    | 0.17<br>0.07    | 10<br>3.3          |                   | 0.12<br>0.03       | 1.2               | 0.11                | 0.14             | 3                 | 0.01                   | 3               | 3             | Š                 | 3                 | 0.31             | 3                 | 3                 | 3               | 3             |
| benzo(ghi)pérylène                                       | mg/kg MS             |            |           | <0.01 / <0.02*                   | <                                    | 0.22            | 9.7                | <                 | 0.11               | 1.1               | 0.1                 | 0.18             | <                 | 0.02                   | <               | <             | <                 | <                 | 0.36             | 0.01              | <                 | <               | <             |
| indéno(1,2,3-cd)pyrène<br>Somme des HAP (16) - EPA       | mg/kg MS<br>mg/kg MS | 50         |           | <0.01 / <0.02*<br><0.16 / <0.32* | <                                    | 0.2<br>1.9      | 9.8<br>97          | <                 | 0.09<br>1.9        | 0.97<br>15        | 0.04<br>5.3         | 0.12<br>1.5      | <                 | 0.01<br><              | <               | <             | <                 | <                 | 0.3<br>2.9       | 0.01<br><         | <                 | 0.18            | <             |
| HYDROCARBURES TOTAUX Hydrocarbures Volatils C5-C10       | mg/kg MS             |            |           | <10                              | <                                    | <               | <                  | <                 | -                  | <                 | -                   | <                | <                 | <                      | <               | <             | <                 | <                 | -                | -                 | -                 | -               | -             |
| fraction C10-C12<br>fraction C12-C16                     | mg/kg MS<br>mg/kg MS |            |           | <5<br><10 / <5*                  | < <                                  | < <             | <<br>14            | <                 | 49<br>310          | < <               | 500<br>2 300        | <                | <                 | < <                    | <               | < <           | < <               | < <               | -                | -                 | -                 | -               | -             |
| fraction C16-C21<br>fraction aromat. >C6-C7              | mg/kg MS<br>mg/kg MS |            |           | <15 / <5*<br><0.4                | < <                                  | < <             | 59<br><            | <                 | 260                | < <               | 1 600               | < <              | < <               | < <                    | < <             | < <           | < <               | < <               | -                | -                 | -                 | -               | -             |
| fraction aromat. >C7-C8<br>fraction aromat. >C8-C10      | mg/kg MS<br>mg/kg MS |            |           | <0.05<br><0.3                    | < <                                  | <               | 0.21               | <                 | -                  | 0.09              | -                   | <                | <                 | < <                    | <               | < <           | < <               | <                 | -                | -                 | -                 | -               | -             |
| fraction aliphat. >C5-C6<br>fraction aliphat. >C6-C8     | mg/kg MS<br>mg/kg MS |            |           | <0.5<br><0.6                     | <                                    | <               | <                  | <                 | -                  | <                 | _                   | <                | <                 | <                      | <               | <             | <                 | <                 | -                | -                 | -                 | _               | -             |
| fraction aliphat. >C8-C10<br>fraction C21-C35            | mg/kg MS<br>mg/kg MS |            |           | <0.6<br><10                      | 0.89                                 | 0.88<br>38      | 280                |                   | -                  | 0.67<br>67        | -                   | <<br>90          | 0.63              | <<br>57                | 3               | 3             | 0.64              | 3                 | -                | -                 | -                 | -               | -             |
| fraction C21-C33<br>fraction C35-C40<br>fraction C21-C40 | mg/kg MS             |            |           | <15<br><5                        | <                                    | <               | 35                 | <                 | 660                | <                 | 3 800               | 18               | <                 | < <                    | <               | <             | <                 | <                 | -                | -                 | -                 | _               | -             |
| hydrocarbures totaux C10-C40                             | mg/kg MS<br>mg/kg MS | 500        |           | <20                              | <                                    | 64              | 390                | <                 | 1 300              | 95                | 8 200               | 120              | <                 | 81                     | <               | <             | <                 | <                 | -                | -                 | -                 | -               | -<br>-        |
| PCB 28                                                   | μg/kg MS             |            |           | <1                               | -                                    | -               | -                  | -                 | <                  | -                 | <                   | -                | -                 | -                      | -               | -             | -                 | -                 | -                | -                 | -                 | -               | -             |
| PCB 52<br>PCB 101                                        | μg/kg MS<br>μg/kg MS |            |           | <1<br><1                         | -                                    | -               | -                  | -                 | < <                | -                 | < <                 | -                | -                 | -                      | -               | -             | -                 | -                 | -                | -                 | -                 | -               | -             |
| PCB 118<br>PCB 138                                       | μg/kg MS<br>μg/kg MS |            |           | <1<br><1                         | -                                    | -               | -                  | -                 | < <                | -                 | < <                 | -                | -                 | -                      | -               | -             |                   | -                 | -                |                   | -                 | -               | -             |
| PCB 153<br>PCB 180                                       | μg/kg MS<br>μg/kg MS |            |           | <1<br><1                         | -                                    | -               | -                  | -                 | < <                | -                 | < <                 | -                | -                 | -                      | -               | -             | -                 | -                 | -                | -                 | -                 | -               | -             |
| PCB totaux (7)                                           | μg/kg MS             | 1 000      |           | <7                               | -                                    | -               | -                  | -                 | <                  | -                 | <                   | -                | -                 | -                      | -               | -             | -                 | -                 | -                | -                 | -                 | -               | -             |
| L/S<br>pH final ap. lix.                                 | ml/g                 |            |           | <0.02                            | -                                    | -               | -                  | -                 | 10.01<br>9.34      | -                 | 10.02<br>8.35       | -                | -                 | -                      | -               | -             | -                 | -                 | -                | -                 | -                 | -               | -             |
| température pour mes. pH                                 | °C                   |            |           | -                                | -                                    | -               | -                  | -                 | 17.5               | -                 | 18.2                | -                | -                 | -                      | -               | -             | -                 | -                 | -                | -                 | -                 | -               | -             |
| conductivité (25°C) ap. lix.  ELUAT COT                  | μS/cm                | 56.5       |           |                                  | -                                    | -               | -                  | -                 | 250                | -                 | 234                 | -                | -                 | -                      | -               | -             | -                 | -                 | -                | -                 | -                 | -               | -             |
| COD, COT sur éluat<br>ELUAT METAUX                       | mg/kg MS             | 500        |           | <5                               | -                                    | -               | -                  | -                 | 40                 | -                 | 56                  | -                | -                 | -                      | -               | -             | -                 | -                 | -                | -                 | -                 | -               | -             |
| antimoine<br>arsenic                                     | mg/kg MS<br>mg/kg MS | 0.06       |           | <0.039<br><0.05                  | -                                    |                 | -                  |                   | 0.11               |                   | 0.15                | -                | -                 |                        | -               |               | -                 | -                 | -                | -                 | -                 | -               |               |
| baryum<br>cadmium                                        | mg/kg MS<br>mg/kg MS | 20<br>0.04 |           | <0.05<br><0.004                  | -                                    | -               | -                  | -                 | 0.33               | -                 | 2.2                 | -                | -                 | -                      | -               | -             | -                 | -                 | -                | -                 | -                 | -               | -             |
| chrome                                                   | mg/kg MS<br>mg/kg MS | 0.5        |           | <0.01<br><0.05                   | -                                    | -               | -                  | -                 | < <                | -                 | < <                 | -                | -                 | -                      | -               | -             | -                 | -                 | -                | -                 | -                 | -               | -             |
| mercure<br>plomb                                         | mg/kg MS<br>mg/kg MS | 0.01       |           | <0.005<br><0.1                   | -                                    | -               | -                  | -                 | <                  | -                 | <                   | -                | -                 | -                      | -               | -             | -                 | -                 | -                | -                 | -                 | -               | -             |
| molybdène                                                | mg/kg MS             | 0.5        |           | < 0.05                           | -                                    | -               | -                  | -                 | 0.11               | -                 | 0.33                | -                | -                 | -                      | -               | -             | -                 | -                 | -                | -                 | -                 | -               | -             |
| nickel<br>sélénium                                       | mg/kg MS<br>mg/kg MS | 0.4        |           | <0.1<br><0.039                   | -                                    | -               | -                  | -                 | <                  | -                 | < <                 | -                | -                 | -                      | -               | -             | -                 | -                 | -                | -                 | -                 | -               | -             |
| zinc<br>ELUAT COMPOSES I NORGA                           |                      | 4          |           | <0.2                             | -                                    | -               | -                  | _                 | <                  | -                 | <                   | -                | -                 | -                      | -               | -             | -                 | -                 | -                | -                 | -                 | _               | -             |
| fraction soluble<br>ELUAT PHENOLS                        | mg/kg MS             | 4 000      |           | <500                             | -                                    |                 | -                  |                   | 1 460              |                   | 1 580               |                  |                   | -                      | -               | -             | -                 | -                 | -                | _                 | -                 | -               | -             |
| Indice phénol ELUAT DI VERSES ANALYSE                    | mg/kg MS             | 1<br>FS    |           | <0.1                             | -                                    |                 |                    |                   | <                  |                   | <                   |                  |                   |                        | -               |               | -                 | -                 |                  |                   |                   | -               |               |
| fluorures<br>chlorures                                   | mg/kg MS<br>mg/kg MS | 10         |           | <2<br><10                        |                                      |                 | -                  |                   | 16<br>38           |                   | 8.4<br>25           | -                | -                 |                        | -               |               | -                 |                   | -                | -                 | -                 | -               | -             |
| chlorures<br>sulfate                                     | mg/kg MS<br>mg/kg MS | 1 000      |           | <10                              |                                      | -               | -                  | -                 | 759                | -                 | 438                 |                  |                   |                        | -               | -             |                   |                   |                  | -                 |                   | -               | -             |
|                                                          |                      |            |           | ·                                | (1) Seuils ISDI<br>installations cla |                 | exe II de l'arrête | du 12/12/201      | 4 relatif aux coi  | nditions d'admi   | ssion des déche     | ets inertes dans | les installations | s relevant des i       | rubriques 2515, | 2516, 2517 et | t dans les instal | lations de stock  | age de déchets i | nertes relevant d | e la rubrique 276 | de la nomenclat | ure des       |



<sup>(1)</sup> Seulis 1301 issue de l'artifete du 12/12/2014 Telatin aux conditions d'admission des decriets inei les dans les installations classées.

(2) Teneurs totales en éléments traces dans les sols pour les « Anomalies naturelles modérée » issues du Courrier de l'environnement de l'INRA n°39 « Teneurs totales en « métaux lourds » dans les sols français - Résultats généraux du programme ASPITET », février 2000.

<sup>- :</sup> analyse non réalisée
< : concentration inférieure à la limite de quantification du laboratoire

XX : concentration en métaux supérieure à la concentration du fond géochimique défini par le point de référence GAL9\_S0

\* Limites de quantification différentes pour les packs ISDI réalisés sur les points GAL3-5\_S2 et GAL3-5\_S2bis. Les LQ de référence de ces deux analyses sont celles identifiées par un astérisque (\*)

|                                                          |                       |             |           | Ouvrage                          | GAL3-             | -5_S13           | GAL3-               | 5_S14            | GAL3             | -5_S15                 | GAL3-5_T1N         |                             | GAL3              | -5_T1S            |                        | GAL3-5_T2E           | GAL3-5_T20       | GAL3-5_T3N        | GAL3-5_T3S           | GAL3-           | 5_T4E             | GAL3-5_T40    |
|----------------------------------------------------------|-----------------------|-------------|-----------|----------------------------------|-------------------|------------------|---------------------|------------------|------------------|------------------------|--------------------|-----------------------------|-------------------|-------------------|------------------------|----------------------|------------------|-------------------|----------------------|-----------------|-------------------|---------------|
| PARAMETRE                                                | Unité                 | (1)         | (2)       | Profondeur                       | 0.1-0.5           | 0.5-1            | 0-0.3               | 0.3-1            | 1.6-2.2          | 2.2-2.4                | 0.9-1.2            | 0.4-0.6                     | 0.6-0.9           | 0.9               | 9-1.2                  | 1-1.5                | 1-1.5            | 0.8-1.1           | 0.8-1.1              | 0.3-0.5         | 1-1.2             | 1-1.2         |
| broyage                                                  | _                     |             |           | LQ*                              |                   |                  |                     |                  |                  | #                      |                    |                             |                   |                   | Pack ISDI              |                      |                  |                   |                      |                 |                   |               |
| broyage                                                  |                       |             |           |                                  |                   |                  |                     |                  |                  | "                      |                    |                             |                   |                   |                        |                      |                  |                   |                      |                 |                   |               |
| matière sèche                                            | % massique            | <30         |           |                                  | 90.7              | 78.2             | 79.7                | 71               | 76.4             | 86.3                   | 81.8               | 73.3                        | 68.5              | 53                | 54.2                   | 75                   | 75.7             | 69.7              | 72.2                 | 83              | 74.1              | 76.4          |
| COT                                                      | mg/kg MS              | 30 000      |           | <2 000                           | -                 | -                | -                   | -                | -                | -                      | -                  | -                           | -                 | -                 | -                      | -                    | -                | -                 | -                    | -               | -                 | -             |
| température pour mes. pH                                 | °C                    |             |           | <1                               | -                 | -                | _                   | _                | _                | _                      | _                  | -                           | _                 | -                 | 20                     | -                    | _                | -                 | -                    | -               | _                 | _             |
| pH (KCI)                                                 | -                     |             |           | <1                               | -                 | -                | -                   | -                | -                | -                      | -                  | -                           | -                 | -                 | 11                     | -                    | -                | -                 | -                    | -               | -                 | -             |
| METAUX<br>arsenic                                        | mg/kg MS              |             | 60        | <1                               | -                 | -                | -                   | 30               | 23               | 14                     | 10                 | -                           | 15                | 14                | -                      | 22                   | 9.6              | 24                | 23                   | -               | 20                | 23            |
| cadmium<br>chrome                                        | mg/kg MS<br>mg/kg MS  |             | 2<br>150  | <0.2<br><1                       | -                 | -                | -                   | <<br>37          | <<br>30          | <<br>59                | 33                 | -                           | <u>0.24</u><br>35 | <u>0.39</u><br>37 | -                      | <u>0.22</u><br>54    | <<br>34          | <u>0.23</u><br>34 | <<br>39              | -               | <<br>36           | <<br>54       |
| cuivre                                                   | mg/kg MS              |             | 62        | <1                               | -                 | -                | -                   | 28               | 15               | 9.5                    | 15                 | -                           | 38                | <u>66</u>         | -                      | 26                   | 16               | 30                | 20                   | -               | 37                | 22            |
| mercure<br>plomb                                         | mg/kg MS<br>mg/kg MS  |             | 2.3<br>90 | <0.05<br><10                     | -                 | -                | _                   | 34               | <<br>18          | 13                     | <<br>21            | -                           | <u>0.08</u><br>50 | 0.19<br>99        | -                      | <<br>27              | <u>0.3</u><br>24 | <u>0.11</u><br>34 | 24                   | -               | <u>0.07</u><br>45 | <<br>31       |
| nickel                                                   | mg/kg MS              |             | 130       | <1                               | -                 | -                | -                   | 38               | 30               | 20                     | 25                 | -                           | 29                | 26                | -                      | 44                   | 24               | 29                | 34                   | -               | 30                | 46            |
| zinc<br>COMPOSES AROMATIQUES                             | mg/kg MS<br>VOLATILS  |             | 250       | <10                              | -                 | -                | -                   | <u>60</u>        | <u>67</u>        | 23                     | <u>46</u>          | -                           | 96                | <u>150</u>        | -                      | <u>85</u>            | 41               | 77                | <u>75</u>            | -               | <u>96</u>         | <u>88</u>     |
| benzène<br>toluène                                       | mg/kg MS<br>mg/kg MS  | -           | +         | <0.02 / <0.05*<br><0.02 / <0.05* |                   | -                |                     | <                | <                | <                      | <                  | -                           | 0.05              | 0.07<br>6.1       | 0.1<br>4.5             | <                    | <                | 0.04              | <                    | -               | 0.06              | <             |
| éthylbenzène                                             | mg/kg MS              |             |           | <0.02 / <0.05*                   | -                 | -                | -                   | ·                | <                | <                      | <                  | -                           | 0.03              | 5.7               | 4.1                    | <                    | <                | <                 | <                    | -               | 0.23              | <             |
| orthoxylène<br>para- et métaxylène                       | mg/kg MS<br>mg/kg MS  |             | -         | <0.02 / <0.05*<br><0.02 / <0.05* | -                 | -                | -                   | <                | <                | <                      | <                  | -                           | 0.05              | 7<br>15           | 4.8<br>11              | <                    | <                | 0.04              | <                    | -               | 0.22              | <             |
| xylènes<br>BTEX totaux                                   | mg/kg MS<br>mg/kg MS  | 4           |           | <0.04 / <0.10*<br><0.02 / <0.25* | _                 | -                | -                   | <                | 5                | 5                      | 5                  | -                           | 0.05<br>0.13      | 22                | 16                     | <                    | <                | 0.04              | <                    | -               | 0.7               | <             |
| HYDROCARBURES AROMAT                                     | TQUES POL'            | YCYCLI QUI  | ES        |                                  | _                 | -                |                     | <                | <                | <                      | _ <                |                             |                   |                   | 25                     | <                    | <                | <                 | <                    | -               |                   |               |
| naphtalène<br>acénaphtylène                              | mg/kg MS<br>mg/kg MS  | <u> </u>    | <u> </u>  | <0.01 / <0.02*<br><0.01 / <0.02* | 0.39              | 0.01             | -                   | 0.06             | < <              | <                      | 0.01               | -                           | 0.15<br>0.06      | 0.39              | 10<br>0.29             | < <                  | 0.02             | 0.06              | < <                  | -               | 0.7               | 0.16          |
| acénaphtène                                              | mg/kg MS              | 1           |           | <0.01 / <0.02*                   | <                 | <                | -                   | 0.33             | <                | <                      | <                  | -                           | 0.14              | 0.64              | 0.37                   | <                    | 0.01             | 0.02              | <                    | -               | 0.07              | 0.02          |
| fluorène<br>phénanthrène                                 | mg/kg MS<br>mg/kg MS  |             |           | <0.01 / <0.02*<br><0.01 / <0.02* | 1.5               | 0.02             | -                   | 0.25<br>0.65     | <                | 0.04                   | 0.04               | -                           | 0.21              | 0.8<br>3.7        | 0.37<br>2.8            | < <                  | 0.03             | 0.02<br>0.13      | 0.03                 |                 | 0.1               | 0.01<br>0.03  |
| anthracène<br>fluoranthène                               | mg/kg MS<br>mg/kg MS  |             |           | <0.01 / <0.02*<br><0.01 / <0.02* | 0.41<br>4.7       | 0.05             | -                   | 0.22<br>0.06     | <                | 0.02                   | 0.07               | -                           | 0.15<br>0.14      | 0.56<br>0.12      | 0.33<br>0.05           | <                    | 0.01<br>0.06     | 0.04<br>0.23      | 0.06                 | -               | 0.07<br>0.21      | 0.02          |
| pyrène                                                   | mg/kg MS              |             |           | <0.01 / <0.02*                   | 4.9               | 0.05             | -                   | 0.06             | <                | 0.07                   | 0.06               | -                           | 0.28              | 0.57              | 0.44                   | <                    | 0.06             | 0.23              | 0.05                 | -               | 0.25              | 0.02          |
| benzo(a)anthracène<br>chrysène                           | mg/kg MS<br>mg/kg MS  |             | +         | <0.01 / <0.02*<br><0.01 / <0.02* | 3.7               | 0.05             | -                   | 0.08             | < <              | 0.04                   | 0.04               | -                           | 0.12<br>0.13      | 0.09              | 0.09                   | < <                  | 0.04             | 0.16<br>0.13      | 0.04                 | -               | 0.14              | < <           |
| benzo(b)fluoranthène                                     | mg/kg MS              |             |           | <0.01 / <0.02*                   | 4.9               | 0.06             | -                   | <                | <                | 0.03                   | 0.04               | -                           | 0.13              | <                 | 0.05                   | <                    | 0.04             | 0.17              | 0.03                 | -               | 0.15              | <             |
| benzo(k)fluoranthène<br>benzo(a)pyrène                   | mg/kg MS<br>mg/kg MS  |             |           | <0.01 / <0.02*<br><0.01 / <0.02* | 2.4<br>4.9        | 0.03             |                     | 0.05             | <                | 0.02                   | 0.02               | -                           | 0.07<br>0.12      | 0.1               | 0.02                   | <                    | 0.02             | 0.09<br>0.18      | 0.01<br>0.03         | -               | 0.07              | <             |
| dibenzo(ah)anthracène<br>benzo(ghi)pérylène              | mg/kg MS<br>mg/kg MS  |             |           | <0.01 / <0.02*<br><0.01 / <0.02* | 1.1<br>4.2        | 0.01<br>0.06     | -                   | V 1              | <                | 0.02                   | 0.04               | -                           | 0.03<br>0.13      | 0.09              | 0.02                   | <                    | 0.04             | 0.04<br>0.19      | 0.02                 | -               | 0.04<br>0.15      | <             |
| indéno(1,2,3-cd)pyrène                                   | mg/kg MS              |             |           | <0.01 / <0.02*                   | 4                 | 0.05             | -                   | <                | <                | 0.02                   | 0.03               | -                           | 0.08              | <                 | 0.02                   | <                    | 0.03             | 0.15              | 0.02                 | -               | 0.11              | <             |
| Somme des HAP (16) - EPA<br>HYDROCARBURES TOTAUX         | mg/kg MS              | 50          |           | <0.16 / <0.32*                   | 40                | 0.5              | -                   | 2.1              | <                | 0.41                   | 0.47               | -                           | 2.5               | 32                | 15                     | <                    | 0.43             | 1.8               | 0.33                 | -               | 2.7               | 0.29          |
| Hydrocarbures Volatils C5-C10<br>fraction C10-C12        | mg/kg MS<br>mg/kg MS  |             |           | <10<br><5                        | -                 | -                | -                   | 48<br>200        | <                | <                      | <                  | -                           | 21<br>100         | 220<br>900        | 620                    | <                    | <                | < 8               | <                    | -               | 15<br>46          | <             |
| fraction C12-C16                                         | mg/kg MS              |             |           | <10 / <5*                        | _                 | -                | <                   | 810              | <                | <                      | <                  | <                           | 670               | 3 200             | 2 600                  | <                    | 19               | 85                | <                    | <               | 270               | <             |
| fraction C16-C21<br>fraction aromat. >C6-C7              | mg/kg MS<br>mg/kg MS  |             | +         | <15 / <5*<br><0.4                | -                 | -                | 60                  | 890              | < <              | <                      | < <                | 22                          | 540               | 2 300             | 1 900                  | < <                  | 18               | 81                | < <                  | 25<br>-         | 200               | < <           |
| fraction aromat. >C7-C8                                  | mg/kg MS              |             |           | < 0.05                           | -                 | -                | -                   | <                | <                | <                      | <                  | -                           | <_                | 4.1               | -                      | <                    | <                | <                 | <                    | -               | 0.14              | <             |
| fraction aromat. >C8-C10<br>fraction aliphat. >C5-C6     | mg/kg MS<br>mg/kg MS  |             |           | <0.3<br><0.5                     | -                 | -                | -                   | 3.5              | <                | <                      | <                  | -                           | 4.7               | 120               | -                      | <                    | <                | < <               | <                    | -               | 5.2<br><          | <             |
| fraction aliphat. >C6-C8<br>fraction aliphat. >C8-C10    | mg/kg MS<br>mg/kg MS  | -           | +         | <0.6<br><0.6                     |                   | -                |                     | 11<br>33         | <                | <                      | <                  | -                           | 3.4               | 43<br>52          | -                      | <                    | 0.98             | <                 | <                    | -               | 3.1<br>6.5        | <             |
| fraction C21-C35                                         | mg/kg MS              |             |           | <10                              | -                 | -                | 380                 | 3 900            | <                | <                      | <                  | 170                         | 1 000             | 4 200             | 3 600                  | <                    | 48               | 190               | <                    | 100             | 420               | <             |
| fraction C35-C40<br>fraction C21-C40                     | mg/kg MS<br>mg/kg MS  |             | -         | <15<br><5                        | -                 | -                | 54                  | 880              | <                | -                      | <                  | 31                          | 120               | 460               | 390                    | <                    | <                | 26<br>-           | -                    | <               | 56<br>-           | <             |
| hydrocarbures totaux C10-C40<br>POLYCHLOROBI PHENYLS (F  |                       | 500         |           | <20                              | -                 | -                | 500                 | 6 700            | <                | <                      | <                  | 230                         | 2 400             | 11 000            | 9 100                  | <                    | 93               | 390               | <                    | 140             | 990               | <             |
| PCB 28                                                   | μg/kg MS              |             |           | <1                               | -                 | -                | -                   | -                | -                | -                      | -                  | -                           | -                 | -                 | <                      | -                    | -                | -                 | -                    | -               | -                 | -             |
| PCB 52<br>PCB 101                                        | μg/kg MS<br>μg/kg MS  |             | -         | <1<br><1                         | -                 | -                | -                   | _                | -                | -                      | -                  | -                           | -                 | -                 | < <                    | -                    | -                | -                 | -                    | -               | -                 | -             |
| PCB 118                                                  | μg/kg MS              |             |           | <1                               | -                 | -                | -                   | -                | -                | -                      | -                  | -                           | -                 | -                 | <                      | -                    | -                | -                 | -                    | -               | -                 | -             |
| PCB 138<br>PCB 153                                       | μg/kg MS<br>μg/kg MS  |             |           | <1<br><1                         | -                 | -                | -                   | -                | -                | -                      | -                  | -                           | -                 | -                 | <                      | -                    | -                | -                 | -                    | -               | -                 | -             |
| PCB 180<br>PCB totaux (7)                                | μg/kg MS<br>μg/kg MS  | 1 000       |           | <1<br><7                         | -                 | -                | -                   | -                | -                | -                      | -                  | -                           | -                 | -                 | < <                    | -                    | -                | -                 | -                    | -               | -                 | -             |
| LIXIVIATION                                              |                       |             |           |                                  |                   |                  |                     |                  |                  |                        |                    |                             |                   |                   | 10                     |                      |                  |                   |                      |                 |                   |               |
| L/S<br>pH final ap. lix.                                 | ml/g<br>-             |             |           | <0.02<br>0                       | _                 | -                | -                   | -                | -                | -                      | -                  | -                           | -                 | -                 | 10<br>11.97            | -                    | -                | -                 |                      |                 | -                 | -             |
| température pour mes. pH<br>conductivité (25°C) ap. lix. | °C<br>µS/cm           |             |           | -                                | -                 | -                | -                   | -                | -                | -                      |                    | -                           | -                 | -                 | 19.4<br>2 120          | <del>-</del>         | -                | -                 | -                    | -               | -                 | -             |
| ELUAT COT                                                |                       |             |           |                                  |                   |                  |                     |                  |                  |                        |                    |                             |                   |                   |                        |                      |                  |                   |                      |                 |                   |               |
| COD, COT sur éluat<br>ELUAT METAUX                       | mg/kg MS              | 500         |           | <5                               |                   | -                |                     | -                | -                | -                      | -                  | -                           | -                 | -                 | 120                    | -                    | -                | -                 | -                    | -               | -                 | -             |
| antimoine<br>arsenic                                     | mg/kg MS<br>mg/kg MS  |             |           | <0.039<br><0.05                  | -                 | -                | -                   |                  | -                | -                      | -                  | -                           | -                 | -                 | <                      | -                    | -                | -                 | -                    | -               | -                 | -             |
| baryum                                                   | mg/kg MS              | 20          |           | < 0.05                           | -                 | -                | -                   | -                | -                | -                      |                    | -                           | -                 | -                 | 11                     | 1                    | -                | -                 | -                    | -               | -                 | -             |
| cadmium<br>chrome                                        | mg/kg MS<br>mg/kg MS  |             |           | <0.004<br><0.01                  | -                 | -                | -                   | -                | -                | -                      | -                  | -                           | -                 | -                 | <                      | -                    | -                | -                 | -                    | -               | -                 | -             |
| cuivre                                                   | mg/kg MS              | 2           |           | < 0.05                           | -                 | -                | -                   | -                | -                | -                      | -                  | -                           | -                 | -                 | 0.16                   | -                    | -                | -                 | -                    | -               | -                 | -             |
| mercure<br>plomb                                         | mg/kg MS<br>mg/kg MS  | 0.01<br>0.5 |           | <0.0005<br><0.1                  | _                 | -                | -                   | _                | -                | -                      |                    | -                           | -                 | -                 | <                      |                      | -                | _                 |                      |                 | -                 | -             |
| molybdène<br>nickel                                      | mg/kg MS<br>mg/kg MS  | 0.5<br>0.4  |           | <0.05<br><0.1                    | -                 | -                | -                   | -                | -                | -                      |                    | -                           | -                 | -                 | 0.1                    | <del>-</del>         | -                | -                 | -                    | -               | -                 |               |
| sélénium                                                 | mg/kg MS              | 0.1         |           | < 0.039                          | -                 | -                | -                   | -                | -                | -                      | -                  | -                           | -                 | -                 | <                      | -                    | -                | -                 | -                    | -               | -                 | -             |
| zinc<br>ELUAT COMPOSES I NORGAI                          | mg/kg MS<br>NIQUES    | 4           |           | <0.2                             |                   | -                |                     |                  | -                | -                      | -                  | -                           | -                 | -                 | <                      | -                    | -                | -                 | -                    | -               | -                 | -             |
| fraction soluble                                         | mg/kg MS              | 4 000       |           | <500                             |                   |                  |                     |                  |                  |                        |                    |                             |                   |                   | 9 120                  | -                    |                  |                   |                      |                 |                   |               |
| ELUAT PHENOLS<br>Indice phénol                           | mg/kg MS              |             |           | <0.1                             | -                 | -                | -                   | -                | -                | -                      | -                  | -                           | -                 | -                 | 0.18                   | -                    | -                | -                 |                      | -               | -                 | -             |
| ELUAT DIVERSES ANALYSE fluorures                         | S CHIMIQU<br>mg/kg MS |             |           | <2                               | _                 | _                |                     |                  | _                |                        |                    | _                           |                   | _                 | -                      |                      | _                |                   |                      |                 |                   |               |
| chlorures                                                | mg/kg MS              | 800         |           | <10                              | -                 | -                | -                   | -                | -                | -                      | -                  | -                           | -                 | -                 | 2 200                  | -                    | -                | -                 | -                    | -               | -                 | -             |
| sulfate                                                  | mg/kg MS              | 1 000       |           | <10                              | (1) Seuils ISDI i | ssus de l'annexe | II de l'arrêté du 1 | 2/12/2014 relati | f aux conditions | l<br>d'admission des r | léchets inertes da | I -<br>Ins les installation | ns relevant des r | rubriques 2515. 2 | 107<br>2516, 2517 et d | ans les installation | s de stockage de | déchets inertes r | elevant de la rubrio | ue 2760 de la n | omenclature des   | installations |
|                                                          |                       |             |           |                                  | classées.         |                  | uu I                |                  |                  |                        | uc                 |                             |                   |                   | , 20 . / Ct u          |                      | oonage de        |                   |                      | ,               |                   |               |

classées.

(2) Teneurs totales en éléments traces dans les sols pour les « Anomalies naturelles modérée » issues du Courrier de l'environnement de l'INRA n°39 « Teneurs totales en « métaux lourds » dans les sols français - Résultats généraux du programme ASPITET », février 2000.



<sup>- :</sup> analyse non réalisée
< : concentration inférieure à la limite de quantification du laboratoire

XX : concentration en métaux supérieure à la concentration du fond géochimique défini par le point de référence GAL9\_S0

\* Limites de quantification différentes pour les packs ISDI réalisés sur les points GAL3-5\_S2 et GAL3-5\_S2bis. Les LQ de référence de ces deux analyses sont celles identifiées par un astérisque (\*)

|                                                       |                        |              | Ouvrage                          |                 |                   |                     |                   |                     |              |                   |                      | GAL3-5_T7S       |                   |                       | GAL3-5_T9N GAL3-5_T9S |                 |                     | GAL3-5_T10N GAL3-5_T10S GAL3-5_MW1 |                   |                   |                     |                 |
|-------------------------------------------------------|------------------------|--------------|----------------------------------|-----------------|-------------------|---------------------|-------------------|---------------------|--------------|-------------------|----------------------|------------------|-------------------|-----------------------|-----------------------|-----------------|---------------------|------------------------------------|-------------------|-------------------|---------------------|-----------------|
| PARAMETRE                                             | Unité                  | (1) (2)      | Profondeur                       | 1.1-1.6         | 0.9-1.5           | 1-1.2               | 1-1.3             | 0-                  | 0.5          | 1.6-1.8           | 0.6-1                | 1.1-1.6          | 1.1-1.3           | 0-0.1                 | 0.1-0.4               | 1.7-1.9         | T9S(1.4-1.7         | 1.6-1.8                            | 1.4-1.6           | 0.4-0.9           | 0.9-1.5             | 1.5-1.8         |
|                                                       |                        |              | LQ*                              |                 |                   |                     |                   |                     | Pack ISDI    |                   |                      |                  |                   |                       |                       |                 |                     |                                    |                   |                   |                     |                 |
| broyage                                               | -                      |              |                                  | -               |                   |                     |                   |                     |              | #                 |                      |                  |                   |                       |                       | #               |                     |                                    |                   |                   |                     |                 |
| matière sèche                                         | % massique             | <30          |                                  | 79.5            | 77.3              | 77.5                | 84.2              | 70                  | 69.1         | 86                | 73.6                 | 73.9             | 78.6              | 78                    | 72.2                  | 85.9            | 75.1                | 71.6                               | 76                | 77.2              | 86.3                | 82.9            |
| COT                                                   | mg/kg MS               | 30 000       | <2 000                           | _               | _                 | _                   | _                 | _                   | 94 000       | _                 | _                    |                  | _                 | _                     |                       | _               | _                   | _                                  | _                 | _                 | _                   | _               |
| COT                                                   |                        | 30 000       |                                  |                 | _                 |                     |                   |                     |              |                   |                      |                  |                   |                       |                       |                 | _                   |                                    | _                 |                   | _                   |                 |
| température pour mes. pH<br>pH (KCI)                  | °C<br>-                |              | <1<br><1                         | _               | -                 | -                   | -                 | -                   | 20<br>7.9    | -                 | -                    | -                | -                 | -                     | -                     | _               | -                   | -                                  | -                 | -                 | -                   | -               |
| METAUX                                                |                        |              |                                  |                 |                   |                     |                   |                     |              |                   |                      |                  |                   |                       |                       |                 |                     |                                    |                   |                   |                     |                 |
| arsenic<br>cadmium                                    | mg/kg MS<br>mg/kg MS   | 60           | <1<br><0.2                       | <u>25</u>       | <u>25</u>         | <u>16</u>           | 8.6               | 10<br>0.23          | -            | <u>13</u>         | <u>15</u>            | <u>12</u>        | <u>12</u>         | -                     | <u>12</u>             | 8.5<br><        | 10                  | <u>22</u><br><                     | <u>22</u>         | <u>14</u>         | 6.8                 | <u>16</u> <     |
| chrome<br>culvre                                      | mg/kg MS<br>mg/kg MS   | 150          |                                  | 36              | 40                | 34                  | 58<br>7.4         | 50                  | -            | 77<br>13          | 54                   | 40               | 40                | -                     | 39<br>17              | <u>66</u><br>11 | 24<br>14            | 46                                 | 45                | 37                | 28                  | 37              |
| mercure                                               | mg/kg MS               | 62<br>2.3    |                                  | 16<br><         | 15                | 14<br><             | 7.4               | 26<br><u>0.14</u>   | -            | <                 | < 24                 | 18<br><          | 16<br><           | -                     | < 17                  | < .             | <                   | 25<br><                            | 28<br><           | 20<br><           | 6<br><u>0.14</u>    | 12              |
| plomb<br>nickel                                       | mg/kg MS<br>mg/kg MS   | 90           |                                  | <u>19</u><br>31 | 19<br>33          | <u>18</u><br>33     | 10<br>16          | <u>50</u><br>49     | -            | 14<br>25          | <u>29</u><br>48      | <u>23</u><br>35  | <u>22</u><br>34   | -                     | <u>25</u><br>33       | 13<br>25        | <u>17</u><br>21     | <u>26</u><br>48                    | <u>25</u><br>41   | <u>25</u><br>32   | 12<br>10            | <u>16</u><br>32 |
| zinc                                                  | mg/kg MS               | 250          |                                  | 46              | 50                | <u>54</u>           | 23                | 78                  | -            | 31                | 81                   | <u>76</u>        | <u>58</u>         | -                     | 50                    | 25              | 47                  | 110                                | 90                | <u>53</u>         | 15                  | 27              |
| COMPOSES AROMATIQUES benzène                          | mg/kg MS               |              | <0.02 / <0.05*                   |                 |                   |                     | -                 | 0.03                | 0.02         | -                 | -                    | -                |                   | _                     |                       |                 |                     | _                                  |                   |                   | 0.04                |                 |
| toluène                                               | mg/kg MS               |              | <0.02 / <0.05*                   | < <             | <                 | <                   | <                 | 0.05                | 0.03         | <                 | <                    | <                | <                 | -                     | <                     | <               | <                   | <                                  | <                 | <                 | 0.06                | <               |
| éthylbenzène<br>orthoxylène                           | mg/kg MS<br>mg/kg MS   |              | <0.02 / <0.05*<br><0.02 / <0.05* | < <             | < <               | <                   | <                 | 0.12<br>0.38        | 0.06<br>0.25 | <                 | <                    | <                | <                 | -                     | 0.06                  | <               | <                   | <                                  | <                 | <                 | <                   | <               |
| para- et métaxylène                                   | mg/kg MS               |              | <0.02 / <0.05*                   | <               | <                 | <                   | <                 | 2.9                 | 1.4          | <                 | <                    | <                | <                 | -                     | 0.2                   | <               | <                   | <                                  | <                 | 0.02              | 0.04                | <               |
| xylènes<br>BTEX totaux                                | mg/kg MS<br>mg/kg MS   | 6            | <0.04 / <0.10°<br><0.02 / <0.25° | < <             | < <               | < <                 | < <               | 3.3<br>3.5          | 1.7          | <                 | < <                  | < <              | < <               |                       | 0.26<br>0.26          | < <             | <                   | < <                                | < <               | < <               | 0.04<br>0.14        | <               |
| HYDROCARBURES AROMAT naphtalène                       | IQUES POLY<br>mg/kg MS | CYCLIQUES    | <0.01 / <0.02*                   |                 |                   |                     |                   | 0.28                | 0.28         | 0.1               |                      |                  |                   |                       |                       |                 |                     |                                    |                   | 0.88              | 0.06                |                 |
| acénaphtylène                                         | mg/kg MS               |              | <0.01 / <0.02*                   | ٠ <             | <                 | <                   | <                 | 0.5                 | 0.53         | 0.03              | <                    | <                | <                 | -                     | <                     | <               | <                   | <                                  | <                 | <                 | < <                 | <               |
| acénaphtène<br>fluorène                               | mg/kg MS<br>mg/kg MS   |              | <0.01 / <0.02*<br><0.01 / <0.02* | < <             | < <               | < <                 | <                 | 4.3<br>2.9          | 3.4          | 0.11<br>0.1       | < <                  | < <              | < <               | -                     | 0.43                  | < <             | < <                 | < <                                | < <               | 0.12              | <<br>0.04           | < <             |
| phénanthrène                                          | mg/kg MS               |              | <0.01 / <0.02*                   | <               | <                 | <                   | 0.01              | 8                   | 8.6          | 0.3               | <                    | <                | <                 | -                     | 2                     | 0.02            | <                   | <                                  | <                 | 0.21              | 0.39                | <               |
| anthracène<br>fluoranthène                            | mg/kg MS<br>mg/kg MS   |              | <0.01 / <0.02*<br><0.01 / <0.02* | < <             | < <               | < <                 | 0.02              | 2.1                 | 0.19         | 0.07              | < <                  | <                | <                 | -                     | 1.8                   | 0.03            | < <                 | < <                                | 0.02<br>0.01      | 0.11              | 0.12<br>0.87        | < <             |
| pyrène<br>benzo(a)anthracène                          | mg/kg MS<br>mg/kg MS   |              | <0.01 / <0.02*                   | <               | <                 | <                   | 0.02<br>0.01      | 1.3<br>0.28         | 0.97         | 0.12<br>0.04      | <                    | <                | <                 | -                     | 0.62<br>0.21          | 0.02            | <                   | 0.01                               | 0.02              | 0.09              | 0.93                | <               |
| chrysène                                              | mg/kg MS               |              | <0.01 / <0.02*                   | < <             | <                 | <                   | < 0.01            | 0.75                | 0.76         | 0.04              | <                    | <                | <                 | -                     | 0.21                  | 0.01            | <                   | <                                  | <                 | <                 | 0.52                | <               |
| benzo(b)fluoranthène<br>benzo(k)fluoranthène          | mg/kg MS<br>mg/kg MS   |              | <0.01 / <0.02*<br><0.01 / <0.02* | <               | <                 | <                   | <                 | 0.28<br>0.14        | 0.3<br>0.15  | 0.03<br>0.02      | <                    | <                | <                 | -                     | <                     | <               | <                   | <                                  | <                 | <                 | 0.6<br>0.3          | <               |
| benzo(a)pyrène                                        | mg/kg MS               |              | <0.01 / <0.02*                   | * <             | <                 | <                   | <                 | 0.46                | 0.27         | 0.03              | <                    | <                | <                 | -                     | 0.18                  | <               | <                   | <                                  | <                 | <                 | 0.6                 | <               |
| dibenzo(ah)anthracène<br>benzo(ghi)pérylène           | mg/kg MS<br>mg/kg MS   |              | <0.01 / <0.02*<br><0.01 / <0.02* | < <             | <                 | < <                 | <                 | 0.31                | 0.12<br>0.31 | 0.01              | <                    | < <              | <                 | -                     | <                     | < <             | < <                 | < <                                | <                 | 0.19              | 0.12<br>0.49        | < <             |
| indéno(1,2,3-cd)pyrène                                | mg/kg MS               |              | <0.01 / <0.02*                   | <               | <                 | <                   | <                 | <                   | 0.13         | 0.03              | <                    | <                | <                 | -                     | <                     | <               | <                   | <                                  | <                 | <                 | 0.47                | <               |
| Somme des HAP (16) - EPA<br>HYDROCARBURES TOTAUX      | mg/kg MS               | 50           | <0.16 / <0.32*                   | · _ <           | <                 | <                   | <                 | 22                  | 20           | 1.2               | <                    | <                | <                 | -                     | 6.1                   | <               | <                   | <                                  | <                 | 1.7               | 6.1                 | <               |
| Hydrocarbures Volatils C5-C10<br>fraction C10-C12     | mg/kg MS<br>mg/kg MS   |              | <10<br><5                        | <               | <                 | <                   | <                 | 93<br>870           | 1 500        | <<br>24           | <                    | <                | <                 | -                     | 19<br>100             | <               | <                   | <                                  | <                 | <                 | <<br>58             | <               |
| fraction C12-C16                                      | mg/kg MS               |              | <10 / <5*                        | <               | <                 | <                   | <                 | 6 100               | 8 200        | 130               | <                    | <                | <                 | <                     | 810                   | <               | <                   | <                                  | 11                | 41                | 340                 | <               |
| fraction C16-C21<br>fraction aromat. >C6-C7           | mg/kg MS<br>mg/kg MS   |              | <15 / <5*<br><0.4                | <               | <                 | <                   | <                 | 11 000              | 14 000       | 120               | <                    | <                | <                 | 21                    | 1 500                 | <               | 18                  | <                                  | <                 | 120               | 200                 | <               |
| fraction aromat. >C7-C8                               | mg/kg MS               |              | < 0.05                           | <               | <                 | <                   | <                 | 0.05                | -            | <                 | <                    | <                | <                 | -                     | <                     | <               | <                   | <                                  | <                 | <                 | 0.06                | <               |
| fraction aromat. >C8-C10<br>fraction aliphat. >C5-C6  | mg/kg MS<br>mg/kg MS   |              | <0.3<br><0.5                     | <               | < <               | <                   | <                 | 27<br>3.4           | -            | <                 | <                    | <                | <                 | -                     | 5.1                   | <               | <                   | < <                                | <                 | <                 | <                   | < <             |
| fraction aliphat. >C6-C8<br>fraction aliphat. >C8-C10 | mg/kg MS               |              | <0.6<br><0.6                     | <               | <                 | <                   | <                 | 34<br>29            | -            | <<br>2.1          | <                    | <                | <                 | -                     | 3.8<br>10             | <               | <                   | <                                  | <                 | <                 | <                   | <<br>0.61       |
| fraction C21-C35                                      | mg/kg MS<br>mg/kg MS   |              | <10                              | <               | <                 | <                   | 11                | 20 000              | 22 000       | 200               | <                    | <                | <                 | 170                   | 2 200                 | 10              | 40                  | <                                  | 38                | 430               | 310                 | <               |
| fraction C35-C40<br>fraction C21-C40                  | mg/kg MS<br>mg/kg MS   |              | <15<br><5                        | <               | <                 | <                   | <                 | 2 600               | 2 900        | 33                | <                    | <                | <                 | 21                    | 350                   | <               | <                   | <                                  | <                 | 67                | 45                  | <               |
| hydrocarbures totaux C10-C40                          | mg/kg MS               | 500          | <20                              | <               | <                 | <                   | <                 | 41 000              | 49 000       | 510               | <                    | <                | <                 | 210                   | 5 000                 | <               | 71                  | <                                  | 68                | 650               | 960                 | <               |
| POLYCHLOROBI PHENYLS (F<br>PCB 28                     | μg/kg MS               |              | <1                               | -               | -                 | _                   | -                 | -                   | <            | -                 | -                    | -                | _                 | -                     | -                     | _               | -                   | -                                  | _                 | -                 | _                   | _               |
| PCB 52                                                | μg/kg MS               |              | <1                               | -               | -                 | -                   | -                 | -                   | <            | -                 | -                    | -                | -                 | -                     | -                     | _               | -                   | -                                  | -                 | -                 | -                   | -               |
| PCB 101<br>PCB 118                                    | μg/kg MS<br>μg/kg MS   |              | <1<br><1                         | -               | -                 | -                   | -                 |                     | <            | -                 | -                    | -                | -                 | -                     | -                     | -               | -                   | -                                  | -                 | -                 | -                   | -               |
| PCB 138<br>PCB 153                                    | μg/kg MS<br>μg/kg MS   |              | <1<br><1                         | -               | -                 | -                   | -                 | -                   | <            | -                 | -                    |                  | -                 | -                     |                       |                 | -                   | -                                  | -                 | -                 | -                   |                 |
| PCB 180                                               | μg/kg MS               | 1.000        | <1                               | -               | -                 | -                   | -                 | -                   | <            | -                 | -                    | -                | -                 | -                     | -                     | -               | -                   | -                                  | -                 | -                 | -                   | -               |
| PCB totaux (7)<br>LIXIVIATION                         | μg/kg MS               | 1 000        | <7                               |                 |                   |                     |                   |                     | <            |                   | -                    |                  |                   | _                     |                       |                 |                     |                                    | -                 | <u>-</u>          |                     | _               |
| L/S<br>pH final ap. lix.                              | ml/g<br>-              |              | <0.02<br>0                       |                 | -                 | -                   | -                 | -                   | 10<br>8.31   | -                 | -                    | -                | -                 | -                     | -                     | _               | -                   | -                                  | -                 | -                 | -                   |                 |
| température pour mes. pH                              | °C                     |              | -                                |                 | -                 |                     | -                 |                     | 18.9         | -                 | -                    | -                | -                 | -                     | -                     | -               |                     | -                                  | -                 | -                 | -                   | -               |
| conductivité (25°C) ap. lix.<br>ELUAT COT             | μS/cm                  |              | -                                | -               | -                 | -                   | -                 | -                   | 388          | -                 | -                    | -                | -                 | -                     | -                     | -               | -                   | -                                  | -                 | -                 | -                   | -               |
| COD, COT sur éluat                                    | mg/kg MS               | 500          | <5                               |                 |                   |                     |                   |                     | 320          | -                 | _                    |                  |                   |                       |                       |                 | -                   |                                    |                   |                   | -                   | -               |
| ELUAT METAUX antimoine                                | mg/kg MS               | 0.06         | < 0.039                          |                 |                   |                     |                   |                     | 0.095        |                   |                      |                  |                   |                       |                       |                 |                     |                                    |                   |                   |                     |                 |
| arsenic                                               | mg/kg MS<br>mg/kg MS   | 0.5<br>20    | <0.05<br><0.05                   | -               | -                 | -                   | -                 | -                   | 0.14<br>0.39 | -                 | -                    | -                | -                 | -                     | -                     | -               | -                   | -                                  | -                 | -                 | -                   | -               |
| baryum<br>cadmium                                     | mg/kg MS               | 0.04         | < 0.004                          | -               | -                 | -                   | -                 | -                   | < <          | -                 | -                    | -                | -                 | -                     | -                     | -               | -                   | -                                  | -                 | -                 | -                   | -               |
| chrome<br>cuivre                                      | mg/kg MS<br>mg/kg MS   | 0.5          | <0.01<br><0.05                   | -               | -                 | -                   | -                 | -                   | < <          | -                 | -                    | -                | -                 | -                     |                       |                 | -                   | -                                  | -                 | -                 | -                   | -               |
| mercure                                               | mg/kg MS               | 0.01         | < 0.0005                         | -               | -                 | -                   | -                 | -                   | <            | _                 | -                    | -                | -                 | -                     | -                     | _               | -                   | -                                  | -                 | -                 | -                   | -               |
| plomb<br>molybdène                                    | mg/kg MS<br>mg/kg MS   | 0.5<br>0.5   | <0.1<br><0.05                    | -               | -                 | -                   | -                 | -                   | 0.32         | -                 | -                    | -                | -                 | -                     | -                     | _               | -                   | -                                  | -                 | -                 | -                   | -               |
| nickel                                                | mg/kg MS               | 0.4          | < 0.1                            | -               | -                 | -                   | -                 | -                   | <            | _                 | -                    | -                | -                 | -                     | - 1                   | =               | -                   | -                                  | -                 | -                 | -                   | -               |
| sélénium<br>zinc                                      | mg/kg MS<br>mg/kg MS   | 0.1          | <0.039<br><0.2                   |                 |                   |                     | <u> </u>          |                     | < <          |                   |                      | <u>-</u>         | -                 |                       |                       |                 |                     |                                    |                   | <u>-</u>          | <u> </u>            | <u> </u>        |
| ELUAT COMPOSES I NORGAI<br>fraction soluble           |                        | 4 000        | <500                             |                 |                   |                     |                   |                     | 2920         |                   |                      |                  |                   |                       |                       |                 |                     |                                    |                   |                   |                     |                 |
| ELUAT PHENOLS                                         |                        |              |                                  | -               |                   |                     | -                 | -                   |              | -                 | -                    | -                | -                 | -                     | -                     | -               | _                   | -                                  | _                 | -                 | -                   | -               |
| Indice phénol<br>ELUAT DI VERSES ANALYSES             | mg/kg MS<br>S CHIMIOUE | 1<br>S       | <0.1                             | -               | -                 | -                   | -                 | -                   | 0.12         | -                 | -                    | -                | -                 | -                     | -                     |                 | -                   | -                                  | -                 | -                 | -                   | -               |
| fluorures                                             | mg/kg MS               | 10           | <2                               |                 | -                 |                     | -                 | -                   | 5.6          | -                 | -                    | -                | -                 | -                     |                       | -               | -                   | -                                  | -                 |                   | -                   | -               |
| chlorures<br>sulfate                                  | mg/kg MS<br>mg/kg MS   | 800<br>1 000 | <10<br><10                       | -               | -                 | -                   | -                 | -                   | 110<br>782   | -                 | -                    | -                | -                 | -                     | -                     | _               | -                   | -                                  | -                 | -                 | -                   | -               |
|                                                       | ,,, mo                 | -            |                                  | (1) Seuils ISDI | issus de l'annexe | II de l'arrêté du 1 | 2/12/2014 relatif | f aux conditions of |              | échets inertes da | ns les installations | relevant des rub | oriaues 2515, 251 | -<br>16. 2517 et dans | les installations de  | e stockage de d | échets inertes rele | evant de la rubrio                 | ue 2760 de la nor | menclature des in | stallations classée | S.              |

<sup>(1)</sup> Seuils ISDI issus de l'annexe II de l'arrêté du 12/12/2014 relatif aux conditions d'admission des déchets inertes dans les installations classées.



<sup>(2)</sup> Teneurs totales en éléments traces dans les sols pour les « Anomalies naturelles modérée » issues du Courrier de l'environnement de l'INRA n°39 « Teneurs totales en « métaux lourds » dans les sols français - Résultats généraux du programme ASPITET », février 2000.

<sup>- :</sup> analyse non réalisée
< : concentration inférieure à la limite de quantification du laboratoire

XX : concentration en métaux supérieure à la concentration du fond géochimique défini par le point de référence GAL9\_S0

\* Limites de quantification différentes pour les packs ISDI réalisés sur les points GAL3-5\_S2 et GAL3-5\_S2bis. Les LQ de référence de ces deux analyses sont celles identifiées par un astérisque (\*)

Sites du Languedoc – Rapport sur les investigations et les prélèvements libératoires réalisés sur le site de Gallician 3 et 5 (GAL3 et GAL5)

ANNEXE 9
TABLEAU DE SYNTHESE DES CONCENTRATIONS DANS LES EAUX
SOUTERRAINES – CAMPAGNE DE SEPTEMBRE 2020

| PARAMETRE                           | Unité   | LQ     | Valeur de<br>référence* | GAL3-5_MW1 | GAL3-5_MW2 | GAL3-5_MW3           | GAL3-5_MWB           |
|-------------------------------------|---------|--------|-------------------------|------------|------------|----------------------|----------------------|
| METAUX                              |         |        |                         |            |            |                      |                      |
| arsenic                             | μg/l    | <5     | 10                      | <          | 5.6        | <                    | <                    |
| cadmium                             | μg/l    | < 0.2  | 5                       | <          | <          | <                    | <                    |
| chrome                              | μg/l    | <1     | 50                      | <          | <          | <                    | <                    |
| cuivre                              | μg/l    | <2     | 2 000                   | 2.4        | <          | 3.4                  | <                    |
| mercure                             | μg/l    | < 0.05 | 1                       | <          | <          | <                    | <                    |
| plomb                               | μg/l    | <2     | 10                      | 2.3        | <          | 2.3                  | <                    |
| nickel                              | μg/l    | <3     | 20                      | 3.5        | <          | <                    | <                    |
| zinc                                | μg/l    | <10    | 5 000                   | <          | <          | <                    | <                    |
| COMPOSES AROMATIQUES V              | OLATIL  | S      |                         |            |            |                      |                      |
| benzène                             | μg/l    | < 0.2  | 1                       | <          | <          | <                    | <                    |
| toluène                             | μg/l    | < 0.2  | 700                     | <          | <          | <                    | <                    |
| éthylbenzène                        | μg/l    | < 0.2  | 300                     | <          | <          | <                    | <                    |
| orthoxylène                         | μg/l    | < 0.2  |                         | <          | <          | <                    | <                    |
| para- et métaxylène                 | μg/l    | < 0.2  |                         | <          | <          | <                    | <                    |
| xylènes                             | μg/l    | < 0.4  | 500                     | <          | <          | <                    | <                    |
| BTEX totaux                         | μg/l    | <1     |                         | <          | <          | <                    | <                    |
| HYDROCARBURES AROMATIC              | QUES PO | OLYCYC | LIQUES                  |            |            |                      |                      |
| naphtalène                          | μg/l    | < 0.1  |                         | <          | <          | <                    | <                    |
| acénaphtylène                       | μg/l    | < 0.1  |                         | <          | <          | <                    | <                    |
| acénaphtène                         | μg/l    | < 0.1  |                         | <          | <          | <                    | <                    |
| fluorène                            | μg/l    | < 0.05 |                         | <          | <          | <                    | <                    |
| phénanthrène                        | μg/l    | < 0.02 |                         | <          | <          | <                    | 0.05                 |
| anthracène                          | μg/l    | < 0.02 |                         | <          | <          | <                    | <                    |
| fluoranthène                        | μg/l    | < 0.02 |                         | <          | <          | <                    | <                    |
| pyrène                              | μg/l    | < 0.02 |                         | <          | <          | <                    | <                    |
| benzo(a)anthracène                  | μg/l    | < 0.02 |                         | <          | <          | <                    | <                    |
| chrysène                            | μg/l    | < 0.02 |                         | <          | <          | <                    | <                    |
| benzo(b)fluoranthène                | μg/l    | < 0.02 |                         | <          | <          | <                    | <                    |
| benzo(k)fluoranthène                | μg/l    | < 0.01 |                         | <          | <          | <                    | <                    |
| benzo(a)pyrène                      | μg/l    | < 0.01 | 0.01                    | <          | <          | <                    | <                    |
| dibenzo(ah)anthracène               | μg/l    | < 0.02 |                         | <          | <          | <                    | <                    |
| benzo(ghi)pérylène                  | μg/l    | < 0.02 |                         | <          | <          | <                    | <                    |
| indéno(1,2,3-cd)pyrène              | μg/l    | < 0.02 |                         | <          | <          | <                    | <                    |
| Somme des HAP (10) VROM             | μg/l    | < 0.3  |                         | <          | <          | <                    | <                    |
| Somme des HAP (16) - EPA            | μg/l    | < 0.57 |                         | <          | <          | <                    | <                    |
| HYDROCARBURES TOTAUX                |         |        |                         |            |            |                      |                      |
| fraction C5-C6                      | μg/l    | <10    |                         | <          | <          | <                    | <                    |
| fraction C6-C8                      | μg/l    | <10    |                         | <          | <          | <                    | <                    |
| fraction C8-C10                     | μg/l    | <10    |                         | <          | <          | <                    | <                    |
| fraction C10-C12                    | μg/l    | <5     |                         | <          | <          | <                    | <                    |
| fraction C12-C16                    | μg/l    | <5     |                         | <          | <          | <                    | <                    |
| fraction C16-C21                    | μg/l    | <5     |                         | <          | <          | <                    | <                    |
| fraction C21-C40                    | µg/l    | <5     |                         | 25         | 60         | <                    | <                    |
| Hydrocarbures Volatils C5-C10       | µg/l    | <30    |                         | <          | <          | <                    | <                    |
| hydrocarbures totaux C10-C40        |         | <20    | 1 000                   | 25         | 60         | <                    | <                    |
| * Valeurs de référence issues de l' |         |        |                         |            |            | du Ministère de la T | concition écologique |

<sup>\*</sup> Valeurs de référence issues de l'annexe II du Guide d'évaluation de l'état des eaux souterraines (juillet 2019) du Ministère de la Transition écologique et solidaire

<sup>&</sup>lt; : concentration inférieure à la limite de quantification du laboratoire

